VM-NR1677-01-5-a
VM-NR1677-01-5-a
NUREG/CR-1677: Volume 1, Benchmark Problem No. 5
Overview
Test Case
This benchmark problem is an in-line structure between two anchors. The system configuration is shown in Figure 623: FE Model of the Benchmark Problem. The total mass of the system is represented by structural mass element (MASS21) specified at individual nodes. Modal and response spectrum analysis is performed on the piping model. Frequencies obtained from modal solve and the nodal/element solution obtained from spectrum solve are compared against reference results.
Material Properties | Geometric Properties | Loading | |||||||||||||||||||||||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Pipe Elements: Material ID 1:
Material ID 2:
Material ID 3:
Stiffness for Spring-Damper Elements (lb/in): Since there are multiple Spring Supports at different locations, the Stiffness for the Spring Damper Elements are listed based on real constant set number. Set 1:
Set 2:
Set 3:
Set 4:
Mass Elements (lb-sec2/in): (Isotropic Mass) Set 11:
Set 12:
Set 13:
Set 14:
Set 15:
Set 16:
Set 17:
Set 18:
Set 19:
Set 20:
Set 21:
Set 22:
Set 23:
| Straight Pipe: Set 5:
Set 8:
Set 10:
Bend Pipe: Set 6:
Set 7:
Set 9:
| Acceleration Response Spectrum Curve defined by FREQ and SV commands. |
Results Comparison
Table 46: Frequencies Obtained from Modal Solution
Mode | Target | Mechanical APDL | Ratio |
---|---|---|---|
1 | 4.036 | 4.035 | 1.000 |
2 | 4.257 | 4.257 | 1.000 |
3 | 9.116 | 9.115 | 1.000 |
4 | 11.19 | 11.187 | 1.000 |
5 | 17.11 | 17.106 | 1.000 |
6 | 18.17 | 18.171 | 1.000 |
7 | 22.38 | 22.375 | 1.000 |
8 | 27.19 | 27.193 | 1.000 |
9 | 28.01 | 28.011 | 1.000 |
10 | 37.98 | 37.976 | 1.000 |
11 | 40.97 | 40.968 | 1.000 |
Table 47: Maximum Displacements and Rotations Obtained from Spectrum Solve
Result Node | Target | Mechanical APDL | Ratio |
---|---|---|---|
UX at node7 | 0.0976 | 0.0981 | 1.005 |
UY at node13 | 0.0601 | 0.0614 | 1.022 |
UZ at node10 | 0.0466 | 0.047 | 1.008 |
ROTX at node14 | 0.0004 | 0.0004 | 1.015 |
ROTY at node6 | 0.0011 | 0.0011 | 1.005 |
ROTZ at node8 | 0.0002 | 0.0002 | 1.029 |
Table 48: Element Forces and Moments Obtained from Spectrum Solve
Result | Target | Mechanical APDL | Ratio |
---|---|---|---|
Element 1 | |||
PX(I) | 473.600 | 477.753 | 1.009 |
VY(I) | 120.900 | 123.832 | 1.024 |
VZ(I) | 463.600 | 475.143 | 1.025 |
TX(I) | 3979.000 | 4100.777 | 1.031 |
MY(I) | 52390.000 | 52745.642 | 1.007 |
MZ(I) | 9741.000 | 10003.363 | 1.027 |
PX(J) | 473.600 | 477.753 | 1.009 |
VY(J) | 120.900 | 123.832 | 1.024 |
VZ(J) | 403.600 | 475.143 | 1.177 |
TX(J) | 3479.000 | 4100.777 | 1.179 |
MY(J) | 44110.000 | 44355.237 | 1.006 |
MZ(J) | 7434.000 | 7639.033 | 1.028 |
Element 31 | |||
PX(I) | 525.900 | 576.546 | 1.096 |
VY(I) | 233.800 | 256.697 | 1.098 |
VZ(I) | 497.200 | 507.714 | 1.021 |
TX(I) | 15180.000 | 15744.687 | 1.037 |
MY(I) | 11900.000 | 13365.014 | 1.123 |
MZ(I) | 7325.000 | 7246.545 | 0.989 |
PX(J) | 525.900 | 576.546 | 1.096 |
VY(J) | 233.800 | 256.697 | 1.098 |
VZ(J) | 497.200 | 507.714 | 1.021 |
TX(J) | 15180.000 | 15744.687 | 1.037 |
MY(J) | 11900.000 | 11974.064 | 1.006 |
MZ(J) | 7326.000 | 7719.677 | 1.054 |
Element 20 | |||
PX(I) | 418.400 | 423.098 | 1.011 |
VY(I) | 262.600 | 247.341 | 0.942 |
VZ(I) | 215.400 | 238.600 | 1.108 |
TX(I) | 9940.000 | 10477.617 | 1.054 |
MY(I) | 23180.000 | 23160.617 | 0.999 |
MZ(I) | 12000.000 | 11999.284 | 1.000 |
PX(J) | 316.800 | 322.541 | 1.018 |
VY(J) | 215.400 | 247.341 | 1.148 |
VZ(J) | 346.200 | 362.396 | 1.047 |
TX(J) | 15060.000 | 15407.310 | 1.023 |
MY(J) | 22180.000 | 22248.102 | 1.003 |
MZ(J) | 4918.000 | 4876.276 | 0.992 |
Note: PX (I) and PX (J) = Section axial force at node I and J.
VY (I) and VY (J) = Section shear forces along Y direction at node I and J.
VZ (I) and VZ (J) = Section shear forces along Z direction at node I and J.
TX (I) and TX (J) = Section torsional moment at node I and J.
MY (I) and MY (J) = Section bending moments along Y direction at node I and J.
MZ (I) and MZ (J) = Section bending moments along Z direction at node I and J.
The element forces and moments along Y and Z directions are flipped between Mechanical APDL and NRC results.