VM-NR1677-01-4

VM-NR1677-01-4
NUREG/CR-1677: Volume 1, Benchmark Problem No. 4

Overview

Reference:P.Bezler, M. Hartzman & M. Reich, Dynamic Analysis of Uniform Support Motion Response Spectrum Method, (NUREG/CR-1677), Brookhaven National Laboratory, August 1980, Problem 5, Pages 122-217.
Analysis Type(s):
Modal analysis (ANTYPE = 2)
Spectral analysis (ANTYPE = 8)
Element Type(s):
3D 3-Node pipe (PIPE289)
3D 3-Node elbow (ELBOW290)
Spring-Damper Element (COMBIN14)
Mass element (MASS21)
Input Listing:

Test Case

For test case description, problem sketch, material properties, geometry properties and loadings refer to

VM-NR1677-01-4-a

Results Comparison

Table 104: Frequencies Obtained from Modal Solution

ModeFrequency
16.158
26.204
36.563
46.572
56.636
66.641
76.757
87.998
910.327
1011.807
1113.535
1214.050
1314.595
1414.828
1514.926
1615.581
1717.696
1818.974
1930.130
2031.071
2131.075
2231.084
2331.236
2442.849
2543.112
2646.740
2746.746
2848.361
2948.366
3052.126

Table 105: Maximum Displacements and Rotations Obtained from Spectrum Solve

Result_NodeValue
UX at node1030.449
UY at node1407.036E-2
UZ at node1030.978
ROTX at node103 4.188E-3
ROTY at node572.602E-3
ROTZ at node1032.091E-3

Table 106: Element Forces and Moments obtained from Spectrum Solve

ResultMAPDL
Element 28
PX(I)0.131E6
VY(I)0.125E6
VZ(I)0.128E6
TX(I)0.123E8
MY(I)0.707E7
MZ(I)0.117E8
 
PX(J) 0.131E6
VY(J) 0.125E6
VZ(J) 0.128E6
TX(J) 0.122E8
MY(J) 0.409E7
MZ(J)0.973E7
Element 80
PX(I) 0.1570E6
VY(I) 0.1113E6
VZ(I) 0.1214E6
TX(I) 0.1541E7
MY(I) 0.1291E7
MZ(I) 0.1587E8
 
PX(J) 0.1304E6
VY(J) 0.1452E6
VZ(J) 0.1214E6
TX(J) 0.1356E7
MY(J) 0.5341E7
MZ(J)0.1210E8


Note:  PX (I) and PX (J) = Section axial force at node I and J

VY (I) and VY (J) = Section shear forces along Y direction at node I and J

VZ (I) and VZ (J) = Section shear forces along Z direction at node I and J

TX (I) and TX (J) = Section torsional moment at node I and J

MY (I) and MY (J) = Section bending moments along Y direction at node I and J

MZ (I) and MZ (J) = Section bending moments along Z direction at node I and J