VM209

VM209
Static Analysis of Double Bellows Air Spring

Overview

Reference:Dale T.Berry, Henry T.Y.Yang, Formulation and Experimental Verification of a Pneumatic Finite Element, International Journal For Numerical Methods in Engineering, Vol.39, pp 1097-1114 (1996)
Analysis Type(s):Static Analysis (ANTYPE = 0)
Element Type(s):
2-Node Axisymmetric Shell Element (SHELL208)
2D Hydrostatic Fluid element (HSFLD241)
2D Smeared Reinforcing Element (REINF263)
Input Listing:vm209.dat

Test Case

A double bellows-type air spring made of two rubber membranes shaped like toroids (radius Rt, angle of rotation θ degrees) is attached to a rigid plate (height h, radius R) at each end and connected in the middle by a rigid ring (height 2h, radius R). The rubber membrane is reinforced by polyester cords (cross sectional area A) spaced length w apart. The total air spring load with respect to height is measured at pressure loads 20, 40 and 60 PSI.

Figure 327: Multiple Species Flow Problem Sketch

Multiple Species Flow Problem Sketch

Material PropertiesGeometric PropertiesLoading

Erubber = 1000 psi

Nurubber = 0.49

Densitygas = 4.4256e-5 lb-sec2/in4

Epolyester = 40000 psi

Nupolyster = 0.37

Eplate = 3.0467e7 psi

Nuplate = 0.3

Rt = 2.2 inches

R = 4 inches

θ = 90

h = 0.2 inches

A = 1.96e-3 in2

w = 0.05 inches

T = 20 degree Celsius

P = 20, 40,60 psi

X = 1.5 inches

Table 3: PVDATA points for Fluid material model

PVDATA Points (absolute pressure, volume)
20 psi 40 psi 60 psi
(34.7, 238.931) (34.7, 377.9675418) (34.7, 517.9960634)
(44.7, 185.4788747) (44.7, 293.4110447) (44.7, 402.7732752)
(54.7, 151.5704881) (54.7, 239.771) (54.7, 328.6007934)
(74.7, 110.9893668) (74.7, 175.5752838) (74.7, 240.622)
(94.7, 87.54916262) (94.7, 138.4949704) (84.7, 212.2132633)
(414.7, 19.99253846) (114.7, 114.345891) (94.7, 189.8042598)
(1014.7, 8.170795013)(314.7, 41.67611598) (104.7, 171.6758682)
 (414.7, 31.62641355) (164.7, 109.1345683)
 (514.7, 25.48178298) (214.7, 83.71897252)
 (714.7, 18.35101959) (264.7, 67.9050374)
 (914.7, 14.3385522) (314.7, 57.11618494)
 (1014.7, 12.9254693)(364.7, 49.28561393)
  (414.7, 43.3432925)
  (464.7, 38.67971465)
  (514.7, 34.92221372)
  (564.7, 31.8301105)
  (614.7, 29.24103367)
  (664.7, 27.04146743)
  (714.7, 25.14966196)
  (764.7, 23.50524833)
  (814.7, 22.06267755)
  (864.7, 20.78693852)
  (914.7, 19.65066514)
  (964.7, 18.63217933)
  (1014.7, 17.71406662)

Figure 328: Finite Element Model of Problem

Finite Element Model of Problem

Analysis Assumptions and Modeling Notes

Analysis is performed using both GAS and PVDATA options. Smeared reinforcing element REINF263 is used with a base element to provide evenly spaced reinforcing fibers. A one-quarter axisymmetric (HSFLD241 keyopt (3) =1) model is brought to a reference temperature of T degrees Celsius and subjected to a degree of freedom inflation pressure of P applied at the pressure node. Then, the top rigid plate is lowered a distance X. The CNVTOL command is used to set convergence values for the nonlinear analysis.

In the attached input file (vm209.dat), we have only solved for pressure 20 PSI. Modify the D command and use the correct material number (PV points) to solve for pressure 40 and 60 PSI (D, 1, HDSP, 40/Material number 5 and D, 1, HDSDP, 60/Material number 6)

Results Comparison

Table 4: 20 PSI Applied-Gas

UY (in) Target Compressive Load (lbs) Mechanical APDL Ratio
.25 1231 1226.55 0.996
.50 1692 1609.80 0.951
.75 2230 2050.35 0.919
1.00 2769 2581.33 0.932
1.25 3384 3246.09 0.959
1.542304109.820.972

Table 5: 40 PSI Applied-Gas

UY (in) Target Compressive Load (lbs) Mechanical APDL Ratio
.25 2640 2405.88 0.911
.50 3350 3089.12 0.922
.75 4050 3849.41 0.950
1.00 5000 4738.90 0.948
1.25 6000 5825.32 0.971
1.573337209.640.983

Table 6: 60 PSI Applied-Gas

UY (in) Target Compressive Load (lbs) Mechanical APDL Ratio
.25 38753596.300.928
.50 46504578.780.985
.75 60005658.430.943
1.00 72006906.070.959
1.25 87508413.200.962

Table 7: 20 PSI Applied-PVDATA

UY (in) Target Compressive Load (lbs) Mechanical APDL Ratio
.25 1231 1249.79 1.015
.50 1692 1650.75 0.976
.75 2230 2077.76 0.932
1.00 27692613.12 0.944
1.25 3384 3263.09 0.964
1.542304238.181.002

Table 8: 40 PSI Applied-PVDATA

UY (in) Target Compressive Load (lbs) Mechanical APDL Ratio
.25 2640 2455.05 0.930
.50 3350 3185.58 0.951
.75 4050 3950.18 0.975
1.00 5000 4742.420.948
1.25 6000 5923.76 0.987
1.573337251.990.989

Table 9: 60 PSI Applied-PVDATA

UY (in) Target Compressive Load (lbs) Mechanical APDL Ratio
.25 3875 3613.49 0.933
.50 4650 4580.66 0.985
.75 6000 5674.34 0.946
1.00 7200 6922.040.961
1.25 87508780.851.004


Note:  Results Comparison chart displacements have been scaled by a factor of 4 due to quarter symmetry.


Figure 329: Results Using GAS Option

Results Using GAS Option

Figure 330: Results Using PVDATA Option

Results Using PVDATA Option