This magnetic cyclic symmetry analysis uses a model of a simplified electrical machine where the model size can be reduced via cyclic boundary conditions.
Figure 5.14: Two-Phase Electric Machine - Full Model shows a typical example, the full model of a 2-phase electrical machine.
In the full model, flux parallel boundary conditions can be formulated at the outer surface of the stator frame. If only phase A were excited, the magnetic flux would point in the y direction at x=0 plane; flux parallel condition could be formulated at the x=0 plane, allowing an analysis on a half model in the x>=0 space. Similarly, if only phase B were excited, the magnetic flux would have only x component on the y=0 plane; again, flux parallel could be applied to a half model in the y>=0 plane.
Typically, however, both coils are excited, and no flux parallel conditions could be formulated over the x=0 or y=0 planes. However, due to the cyclic nature of the field, the field pattern repeats itself after 180 degrees. In particular, on the y=0 plane:
By(x) = By(-x)
A similar pattern can be observed in Figure 5.15: Two-Phase Electric Machine - Half Model, where the flux lines (equi vector potential lines) are plotted:
Az(x) = - Az(-x)
In this example, the field has a two pole pattern. In general, there are 2p poles; the repetition would take place after 180/p degrees.
The material properties for this analysis are as follows:
Iron relative permeability: 1000
Iron electrical resistivity: 9.579E-8
Aluminum relative permeability: 1.0
Aluminum electrical resistivity: 2.65E-8
Copper relative permeability: 1.0
Copper electrical resistivity: 1.74E-8
Use this input file to perform the example magnetic cyclic symmetry analysis. This file contains the complete geometry, material properties, and solution options for the finite element model. Magnetic cyclic symmetry commands of particular interest are preceded by the comment:
!!! Apply Cylic
fini /clear /title,Cyclic Symmetry Model for EMAG Analysis (Dual Coils with Iron Yoke) /com /com ***** Quarter Symmetry Model Expanded to Half Then to Full ***** /com /com /com /nopr !!! Setup Model Parameters p=1 ! Use for number of quarter sectors ! (i.e. 1 = 1 90deg sector, 2 = 2 sectors in 90deg) alpha=22.5/p ! angle up to the end of first coil beta=alpha+(45/p) ! angle from coil1 to coil2 gamma=beta+(22.5/p) ! angle from beginning of coil2 to end of sector r1=3 r2=4.5 r3=5 r4=7 r5=11 ncoil=(4*p) i1=1 i2=2 *dim,alpha1,,ncoil *dim,alpha2,,ncoil *dim,current,,ncoil *dim,coilname,string,ncoil coilname(1) = 'coil1' coilname(2) = 'coil2' coilname(3) = 'coil3' coilname(4) = 'coil4' *do,i,1,ncoil alpha1(i) = -alpha + (i-1)*(90/p) alpha2(i) = alpha + (i-1)*(90/p) *enddo ii=0 *do,i,1,p ii = ii + 1 current(ii) = i2 ii = ii + 1 current(ii) = i1 ii = ii + 1 current(ii) = -i2 ii = ii + 1 current(ii) = -i1 *enddo /prep7 ET,1,PLANE233 ! 2D magnetic element !!! Setup Model using Parameters PCIRC,r1, ,0,alpha, PCIRC,r1, ,0,beta PCIRC,r1, ,0,gamma PCIRC,r2, ,0,alpha PCIRC,r2, ,0,beta PCIRC,r2, ,0,gamma PCIRC,r3, ,0,alpha PCIRC,r3, ,0,beta PCIRC,r3, ,0,gamma PCIRC,r4, ,0,alpha PCIRC,r4, ,0,beta PCIRC,r4, ,0,gamma PCIRC,r5, ,0,alpha PCIRC,r5, ,0,beta PCIRC,r5, ,0,gamma AOVLAP,ALL !!! Setup Material Properties ! IRON MP,MURX,1,1000 MP,RSVX,1,9.579E-8 ! AL MP,MURX,2,1 MP,RSVX,2,2.65E-8 ! Copper MP,MURX,3,1 MP,RSVX,3,1.74E-8 ! Air MP,MURX,4,1 MP,RSVX,4,0 !!! Setup Components and Atributes ! Iron Core CSYS,1 ! Enter Cylindrical Mode ASEL,S,LOC,X,0,r1 CM,Inner_Iron,AREA AATT,1,,1, ! Al Core ASEL,S,LOC,X,r1,r2 CM,Outer_AL,AREA AATT,2,,1, ! Air Gap ASEL,S,LOC,X,r2,r3 CM,AIR,AREA AATT,4,,1 ! Coil 1 ASEL,S,LOC,X,r3,r4 ASEL,R,LOC,Y,0,alpha CM,COIL1,AREA AATT,3,,1 ! Coil 2 ASEL,S,LOC,X,r3,r4 ASEL,R,LOC,Y,beta,gamma CM,COIL2,AREA AATT,3,,1 ! Iron Yoke ASEL,S,LOC,X,r3,r4 ASEL,R,LOC,Y,alpha,beta ASEL,A,LOC,X,r4,r5 CM,YOKE,AREA AATT,1,,1 ALLSEL CSYS,0 ! Enter Cartesian Mode !!! Setup and Mesh Model MSHKEY,1 CSYS,1 LSEL,S,LOC,Y,0 LSEL,A,LOC,Y,gamma LESIZE,ALL,,,6,,1,,,1, CMSEL,S,Inner_Iron AMESH,ALL CMSEL,S,Outer_AL AMESH,ALL CMSEL,S,Air AMESH,ALL CMSEL,S,Coil1 AMESH,ALL CMSEL,S,Coil2 AMESH,ALL CMSEL,S,Yoke AMESH,ALL ALLSEL CSYS,0 !!! Reflect Model across X-axis !! Create HALF model from QUARTER model arsym,x,all /prep7 save,magtest,db ! save half model for cyclic arsym,y,all ! create full model reflecting on y axis nummrg,all csys,1 nsel,s,loc,x,r5 CM,extnode,NODE ! Apply BFE Current loads to each coil *do,i,1,ncoil asel,s,loc,x,r3,r4 asel,r,loc,y,alpha1(i),alpha2(i) esla,s cm,coilname(i),element bfe,all,js,,,,current(i) *enddo csys,0 allsel cmsel,s,extnode d,all,az,0 allsel FINISH /solu antype,static allsel solve FINISH /post1 !!! Plot Out Result Plots plvect,b,,,,VECT,ELEM,ON,0 FINISH parsav,all /clear,nostart resume,magtest,db ! Resume half Model parres,new !! Delete Bottom half of model and all loading attatched to bottom nodes /prep7 allsel nummrg,all csys,1 nsel,s,loc,x,r5 d,all,az,0 ! AZ = 0 on outside nodes of arc !! Define Coils on Half Model ! Coil 1 ASEL,S,LOC,X,r3,r4 ASEL,R,LOC,Y,0,alpha esla,s CM,COIL1,ELEMENT ! Coil 2 ASEL,S,LOC,X,r3,r4 ASEL,R,LOC,Y,beta,(180-beta) esla,s CM,COIL2,ELEMENT ! Coil 3 ASEL,S,LOC,X,r3,r4 ASEL,R,LOC,Y,(180-alpha),180 esla,s CM,COIL3,ELEMENT !! Apply bfe loads to Half Model coils cmsel,s,COIL1 bfe,all,js,,,,i2 cmsel,s,COIL2 bfe,all,js,,,,i1 cmsel,s,COIL3 bfe,all,js,,,,(-i2) !!! Apply cyclic - create cyclic model with two sectors allsel csys,0 cyclic,2 /solu cycopt,hindex,odd ! Odd Symmetry for half model solve FINISH /post1 /vscale,1,1,1 plvect,b,,,,VECT,ELEM,ON,0 ! B field plf2d ! Equipotential lines FINISH