Expand/Collapse all
Using This Manual
1. What’s In This Manual
2. How To Use This Manual
2.1. For the Beginner
2.2. For the Experienced User
3. Typographical Conventions Used In This Manual
1. Fluid Flow in an Exhaust Manifold
1.1. Introduction
1.2. Prerequisites
1.3. Problem Description
1.4. Setup and Solution
1.4.1. Preparation
1.4.2. Launching Ansys Fluent
1.4.3. Meshing Workflow
1.4.4. General Settings
1.4.5. Solver Settings
1.4.6. Models
1.4.7. Materials
1.4.8. Cell Zone Conditions
1.4.9. Boundary Conditions
1.4.10. Solution
1.5. Postprocessing
1.6. Summary
2. Fluent Postprocessing : Exhaust Manifold
2.1. Introduction
2.2. Prerequisites
2.3. Problem Description
2.4. Setup and Solution
2.4.1. Preparation
2.4.2. Reading the Solution
2.4.3. Manipulating the Mesh in the Viewer
2.4.4. Adding Lights
2.4.5. Creating Isosurfaces
2.4.6. Generating Contours
2.4.7. Generating Velocity Vectors
2.4.8. Creating an Animation
2.4.9. Creating a Scene With Multiple Graphics Features
2.4.10. Creating Exploded Views
2.4.11. Animating the Display of Results in Successive Streamwise Planes
2.4.12. Generating XY Plots
2.4.13. Saving Picture Files
2.4.14. Generating Volume Integral Reports
2.5. Summary
3. Modeling Flow Through Porous Media
3.1. Introduction
3.2. Prerequisites
3.3. Problem Description
3.4. Setup and Solution
3.4.1. Preparation
3.4.2. Meshing Workflow
3.4.3. General Settings
3.4.4. Solver Settings
3.4.5. Models
3.4.6. Materials
3.4.7. Cell Zone Conditions
3.4.8. Boundary Conditions
3.4.9. Solution
3.4.10. Postprocessing
3.5. Summary
4. Modeling Flow Through Porous Media - Model Topology Approach
4.1. Introduction
4.2. Prerequisites
4.3. Problem Description
4.4. Setup and Solution
4.4.1. Preparation
4.4.2. Meshing Workflow
4.4.3. General Settings
4.4.4. Solver Settings
4.4.5. Models
4.4.6. Materials
4.4.7. Cell Zone Conditions
4.4.8. Boundary Conditions
4.4.9. Solution
4.4.10. Postprocessing
4.5. Summary
5. Modeling External Compressible Flow
5.1. Introduction
5.2. Prerequisites
5.3. Problem Description
5.4. Setup and Solution
5.4.1. Preparation
5.4.2. Meshing Workflow
5.4.3. Mesh
5.4.4. Solver
5.4.5. Models
5.4.6. Materials
5.4.7. Boundary Conditions
5.4.8. Operating Conditions
5.4.9. Reference Values
5.4.10. Solution
5.4.11. Postprocessing
5.5. Summary
6. Fluid Flow and Heat Transfer in a Mixing Elbow
6.1. Introduction
6.2. Prerequisites
6.3. Problem Description
6.4. Setup and Solution
6.4.1. Preparation
6.4.2. Meshing Workflow
6.4.3. Setting Up Domain
6.4.4. Setting Up Physics
6.4.5. Solving
6.4.6. Displaying the Preliminary Solution
6.4.7. Adapting the Mesh
6.5. Summary
7. Exhaust System: Fault-tolerant Meshing
7.1. Introduction
7.2. Prerequisites
7.3. Problem Description
7.4. Setup and Solution
7.4.1. Preparation
7.4.2. Geometry and Mesh
7.4.3. General Settings
7.4.4. Solver Settings
7.4.5. Models
7.4.6. Materials
7.4.7. Cell Zone Conditions
7.4.8. Boundary Conditions
7.4.9. Solution
7.4.10. Postprocessing
7.5. Summary
8. Modeling Hypersonic Flow
8.1. Introduction
8.2. Prerequisites
8.3. Problem Description
8.4. Setup and Solution
8.4.1. Preparation
8.4.2. Meshing Workflow
8.4.3. Mesh
8.4.4. Solver
8.4.5. Models
8.4.6. Materials
8.4.7. Operating Conditions
8.4.8. Boundary Conditions
8.4.9. Solution
8.4.10. Postprocessing
8.4.11. Enable the Species Model
8.5. Summary
9. Modeling Transient Compressible Flow
9.1. Introduction
9.2. Prerequisites
9.3. Problem Description
9.4. Setup and Solution
9.4.1. Preparation
9.4.2. Meshing Workflow
9.4.3. Set Units
9.4.4. Solution
9.4.5. Models
9.4.6. Materials
9.4.7. Operating Conditions
9.4.8. Boundary Conditions
9.4.9. Solution: Steady Flow
9.4.10. Enabling Time Dependence and Setting Transient Conditions
9.4.11. Specifying Solution Parameters for Transient Flow and Solving
9.5. Summary
10. Performing Parametric Analyses in Ansys Fluent
10.1. Introduction
10.2. Prerequisites
10.3. Problem Description
10.4. Setup and Solution
10.4.1. Preparation
10.4.2. Mesh
10.4.3. Initialize the Parametric Study
10.4.4. Add Design Points
10.4.5. Set Up Design Point and Parametric Reports
10.4.6. Update Design Point Solutions
10.4.7. Generate Design Point and Parametric Simulation Reports
10.4.8. Compare Design Point Results
10.5. Summary
11. Optimizing Parametric Analyses in Ansys Fluent
11.1. Introduction
11.2. Prerequisites
11.3. Problem Description
11.4. Setup and Solution
11.4.1. Preparation
11.4.2. Mesh
11.4.3. Applying Mesh Morphing
11.4.4. Initialize the Parametric Study
11.4.5. Set Up Design Point and Parametric Reports
11.4.6. Create Design Points and Run an Optimization Study
11.4.7. Generate Design Point and Parametric Simulation Reports
11.4.8. Compare Design Point Results
11.5. Summary
12. Using the Frozen Rotor Method
12.1. Introduction
12.2. Prerequisites
12.3. Problem Description
12.4. Setup and Solution
12.4.1. Preparation
12.4.2. Mesh
12.4.3. Models
12.4.4. Materials
12.4.5. Cell Zone Conditions
12.4.6. Boundary Conditions
12.4.7. Turbomachinery Models
12.4.8. Solution
12.4.9. Postprocessing
12.5. Summary
12.6. Further Improvements
13. Turbomachinery Setup and Analysis Using the Turbo Setup Workflow
13.1. Introduction
13.2. Prerequisites
13.3. Problem Description
13.4. Setup and Solution
13.4.1. Preparation
13.4.2. Turbo Setup Workflow
13.4.3. Review Setup
13.4.3.1. Models and Materials
13.4.3.2. Cell Zone and Boundary Conditions
13.4.3.3. Mesh Interfaces
13.4.3.4. Named Expressions
13.4.4. Review Solution
13.4.4.1. Report Definitions
13.4.4.2. Solution Controls
13.4.4.3. Residual Monitors
13.4.4.4. Monitors
13.4.4.5. Solution
13.5. Postprocessing
13.6. Summary
14. Modeling Blade Row Interaction using Steady-State and Transient Simulations
14.1. Introduction
14.2. Prerequisites
14.3. Problem Description
14.4. Setup and Solution
14.4.1. Preparation
14.4.2. Mesh
14.4.3. Solver Settings for the Steady-State Mixing Plane Model
14.4.4. Models
14.4.5. Materials
14.4.6. Cell Zone Conditions for the Steady-State Mixing Plane Model
14.4.7. Operating Conditions
14.4.8. Boundary Conditions for the Steady-State Mixing Plane Model
14.4.9. Solution of the Steady-State Mixing Plane Model
14.4.10. Postprocessing of the Steady-State Mixing Plane Model
14.4.11. Solver Settings for the Transient Pitch Scale Model
14.4.12. Reference Values
14.4.13. Interface Conditions for the Transient Pitch Scale Model
14.4.14. Cell Zone Conditions for the Transient Pitch Scale Model
14.4.15. Boundary Conditions for the Transient Pitch Scale Model
14.4.16. Solution Settings for the Transient Pitch Scale Model
14.4.17. Postprocessing for the Transient Pitch Scale Model
14.5. Summary
15. Using Sliding Meshes
15.1. Introduction
15.2. Prerequisites
15.3. Problem Description
15.4. Setup and Solution
15.4.1. Preparation
15.4.2. Mesh
15.4.3. General Settings
15.4.4. Models
15.4.5. Materials
15.4.6. Cell Zone Conditions
15.4.7. Boundary Conditions
15.4.8. Operating Conditions
15.4.9. Mesh Interfaces
15.4.10. Solution
15.4.11. Postprocessing
15.5. Summary
16. Using Overset and Dynamic Meshes
16.1. Prerequisites
16.2. Problem Description
16.3. Preparation
16.4. Mesh
16.5. Overset Interface Creation
16.6. Steady-State Case Setup
16.6.1. General Settings
16.6.2. Models
16.6.3. Materials
16.6.4. Operating Conditions
16.6.5. Boundary Conditions
16.6.6. Reference Values
16.6.7. Solution
16.7. Unsteady Setup
16.7.1. General Settings
16.7.2. Compile the UDF
16.7.3. Dynamic Mesh Settings
16.7.4. Report Generation for Unsteady Case
16.7.5. Run Calculations for Unsteady Case
16.7.6. Overset Solution Checking
16.7.7. Postprocessing
16.7.8. Diagnosing an Overset Case
16.8. Summary
17. Modeling Species Transport and Gaseous Combustion
17.1. Introduction
17.2. Prerequisites
17.3. Problem Description
17.4. Background
17.5. Setup and Solution
17.5.1. Preparation
17.5.2. Mesh
17.5.3. General Settings
17.5.4. Models
17.5.5. Materials
17.5.6. Boundary Conditions
17.5.7. Initial Reaction Solution
17.5.8. Postprocessing
17.5.9. NOx Prediction
17.6. Summary
17.7. Further Improvements
18. Using the Monte Carlo Radiation Model
18.1. Introduction
18.2. Prerequisites
18.3. Problem Description
18.4. Setup and Solution
18.4.1. Preparation
18.4.2. Meshing Workflow
18.4.3. Mesh
18.4.4. Models
18.4.5. Materials
18.4.6. Cell Zone Conditions
18.4.7. Boundary Conditions
18.4.8. Solution
18.4.9. Postprocessing
18.5. Summary
18.6. Further Improvements
19. Using the Eddy Dissipation and Steady Diffusion Flamelet Combustion Models
19.1. Introduction
19.2. Prerequisites
19.3. Problem Description
19.4. Setup and Solution
19.4.1. Preparation
19.4.2. Meshing Workflow
19.4.3. Solver Settings
19.4.4. Models
19.4.5. Boundary Conditions
19.4.6. Solution
19.4.7. Postprocessing for the Eddy-Dissipation Solution
19.5. Steady Diffusion Flamelet Model Setup and Solution
19.5.1. Models
19.5.2. Boundary Conditions
19.5.3. Solution
19.5.4. Postprocessing for the Steady Diffusion Flamelet Solution
19.6. Summary
20. Effusion Cooling simulation in a 3D model Combustor
20.1. Introduction
20.2. Prerequisites
20.3. Problem Description
20.4. Background
20.5. Setup and Solution
20.5.1. Preparation
20.5.2. Meshing Workflow
20.5.3. Mesh
20.5.4. Setting Up Physics
20.5.5. Models
20.5.6. Materials
20.5.7. Operating Conditions
20.5.8. Boundary Conditions
20.5.8.1. Perforated Walls
20.5.9. Cold Flow Solution
20.5.10. Combustion Solution
20.5.11. Postprocessing
20.6. Summary
21. Selective Catalytic Reduction Simulation
21.1. Introduction
21.2. Prerequisites
21.3. Problem Description
21.4. Setup and Solution
21.4.1. Preparation
21.4.2. Reading and Checking the Mesh
21.4.3. General Settings
21.4.4. Solver Settings
21.4.5. Specifying the Models
21.4.6. Materials
21.4.7. Cell Zone Conditions
21.4.8. Specifying Boundary Conditions
21.4.9. Modify the Particle Properties
21.4.10. Flow Simulation
21.4.11. Postprocessing the Solution Results
21.5. SCR Specific Post Processing
21.6. Summary
22. Modeling Evaporating Liquid Spray
22.1. Introduction
22.2. Prerequisites
22.3. Problem Description
22.4. Setup and Solution
22.4.1. Preparation
22.4.2. Mesh
22.4.3. Solver
22.4.4. Models
22.4.5. Materials
22.4.6. Boundary Conditions
22.4.7. Initial Solution Without Droplets
22.4.8. Creating a Spray Injection
22.4.9. Solution
22.4.10. Postprocessing
22.5. Summary
23. Using the VOF Model
23.1. Introduction
23.2. Prerequisites
23.3. Problem Description
23.4. Setup and Solution
23.4.1. Preparation
23.4.2. Reading and Manipulating the Mesh
23.4.3. General Settings
23.4.4. Models
23.4.5. Materials
23.4.6. Phases
23.4.7. Operating Conditions
23.4.8. Boundary Conditions
23.4.9. Solution
23.4.10. Postprocessing
23.5. Summary
24. Modeling Cavitation
24.1. Introduction
24.2. Prerequisites
24.3. Problem Description
24.4. Setup and Solution
24.4.1. Preparation
24.4.2. Reading and Checking the Mesh
24.4.3. Solver Settings
24.4.4. Models
24.4.5. Materials
24.4.6. Phases
24.4.7. Boundary Conditions
24.4.8. Operating Conditions
24.4.9. Solution
24.4.10. Postprocessing
24.5. Summary
25. Using the Eulerian Multiphase Model
25.1. Introduction
25.2. Prerequisites
25.3. Problem Description
25.4. Setup and Solution
25.4.1. Preparation
25.4.2. Mesh
25.4.3. Solver Settings
25.4.4. Models
25.4.5. Materials
25.4.6. Phases
25.4.7. Cell Zone Conditions
25.4.8. Boundary Conditions
25.4.9. Solution
25.4.10. Postprocessing
25.5. Summary
26. Modeling Solidification
26.1. Introduction
26.2. Prerequisites
26.3. Problem Description
26.4. Setup and Solution
26.4.1. Preparation
26.4.2. Reading and Checking the Mesh
26.4.3. Specifying Solver and Analysis Type
26.4.4. Specifying the Models
26.4.5. Defining Materials
26.4.6. Setting the Cell Zone Conditions
26.4.7. Setting the Boundary Conditions
26.4.8. Solution: Steady Conduction
26.4.9. Solution: Transient Flow and Heat Transfer
26.5. Summary
27. Using the Eulerian Granular Multiphase Model with Heat Transfer
27.1. Introduction
27.2. Prerequisites
27.3. Problem Description
27.4. Setup and Solution
27.4.1. Preparation
27.4.2. Mesh
27.4.3. Solver Settings
27.4.4. Models
27.4.5. UDF
27.4.6. Materials
27.4.7. Phases
27.4.8. Boundary Conditions
27.4.9. Solution
27.4.10. Postprocessing
27.5. Summary
27.6. References
28. Modeling Ablation
28.1. Introduction
28.2. Prerequisites
28.3. Problem Description
28.4. Setup and Solution
28.4.1. Preparation
28.4.2. Mesh
28.4.3. Solver
28.4.4. Models
28.4.5. Materials
28.4.6. Boundary Conditions
28.4.7. Dynamic Mesh
28.4.8. Solution
28.4.9. Postprocessing
28.5. Summary
29. Modeling One-Way Fluid-Structure Interaction (FSI) Within Fluent
29.1. Introduction
29.2. Prerequisites
29.3. Problem Description
29.4. Setup and Solution
29.4.1. Preparation
29.4.2. Structural Model
29.4.3. Materials
29.4.4. Cell Zone Conditions
29.4.5. Boundary Conditions
29.4.6. Solution
29.4.7. Postprocessing
29.5. Summary
30. Modeling Two-Way Fluid-Structure Interaction (FSI) Within Fluent
30.1. Introduction
30.2. Prerequisites
30.3. Problem Description
30.4. Setup and Solution
30.4.1. Preparation
30.4.2. Solver and Analysis Type
30.4.3. Structural Model
30.4.4. Materials
30.4.5. Cell Zone Conditions
30.4.6. Boundary Conditions
30.4.7. Dynamic Mesh Zones
30.4.8. Solution Animations
30.4.9. Solution
30.4.10. Postprocessing
30.5. Summary
31. Using the Adjoint Solver – 2D Laminar Flow Past a Cylinder
31.1. Introduction
31.2. Problem Description
31.3. Setup and Solution
31.3.1. Step 1: Preparation
31.3.2. Step 2: Define Observables
31.3.3. Step 3: Compute the Drag Sensitivity
31.3.4. Step 4: Postprocess and Export Drag Sensitivity
31.3.4.1. Drag Force Sensitivity Orientation for Plotting
31.3.4.2. Boundary Condition Sensitivity
31.3.4.3. Momentum Source Sensitivity
31.3.4.4. Shape Sensitivity
31.3.4.5. Exporting Drag Sensitivity Data
31.3.5. Step 5: Compute Lift Sensitivity
31.3.6. Step 6: Modify the Shape
31.4. Summary
32. Simulating a Single Battery Cell Using the MSMD Battery Model
32.1. Introduction
32.2. Prerequisites
32.3. Problem Description
32.4. Setup and Solution
32.4.1. Preparation
32.4.2. Reading and Scaling the Mesh
32.4.3. NTGK Battery Model Setup
32.4.3.1. Specifying Solver and Models
32.4.3.2. Defining New Materials for Cell and Tabs
32.4.3.3. Defining Cell Zone Conditions
32.4.3.4. Defining Boundary Conditions
32.4.3.5. Specifying Solution Settings
32.4.3.6. Obtaining Solution
32.4.4. Postprocessing
32.4.5. Simulating the Battery Pulse Discharge Using the ECM Model
32.4.6. Using the Reduced Order Method (ROM)
32.4.7. External and Internal Short-Circuit Treatment
32.4.7.1. Setting up and Solving a Short-Circuit Problem
32.4.7.2. Postprocessing
32.5. Summary
32.6. Appendix
32.7. References
33. Simulating a 1P3S Battery Pack Using the Battery Model
33.1. Introduction
33.2. Prerequisites
33.3. Problem Description
33.4. Setup and Solution
33.4.1. Preparation
33.4.2. Reading and Scaling the Mesh
33.4.3. Battery Model Setup
33.4.3.1. Specifying Solver and Models
33.4.3.2. Defining New Materials
33.4.3.3. Defining Cell Zone Conditions
33.4.3.4. Defining Boundary Conditions
33.4.3.5. Specifying Solution Settings
33.4.3.6. Obtaining Solution
33.4.4. Postprocessing
33.5. Summary
34. Electrolysis Modeling of Proton Exchange Membrane Electrolyzers
34.1. Introduction
34.2. Prerequisites
34.3. Problem Description
34.3.1. Background
34.4. Setup and Solution
34.4.1. Preparation
34.4.2. Mesh
34.4.3. Model Setup
34.4.3.1. Setting Up Physics
34.4.3.2. Models
34.4.3.3. Materials
34.4.3.4. Boundary Conditions
34.4.3.5. Solution
34.4.3.6. Obtaining Solution
34.4.4. Postprocessing
34.5. Summary
Bibliography
35. Fluent’s Virtual Blade Model Tutorials
35.1. Fluent’s Virtual Blade Model Helicopter Tutorial
35.1.1. Introduction
35.1.2. Problem Description
35.1.3. Setup
35.1.3.1. Preparation
35.1.3.2. Meshing Workflow
35.1.3.3. Mesh
35.1.3.4. Enabling the Virtual Blade Model
35.1.3.5. Setup Units
35.1.3.6. Operating Conditions
35.1.3.7. Physical Modeling
35.1.3.8. Materials
35.1.3.9. Boundary Conditions
35.1.3.10. Reference Values
35.1.3.11. Solution Methods and Controls
35.1.3.12. Solution Initialization
35.1.3.13. VBM Rotor Inputs
35.1.3.14. Convergence Monitoring
35.1.3.15. Post-processing Setup
35.1.3.15.1. Cutting Planes for the Pressure Distributions
35.1.3.15.2. Cutting Planes for the VBM Results
35.1.3.15.3. Curves for the Pressure Coefficient
35.1.3.15.4. Custom Field Function
35.1.3.16. Saving Settings and Re-Launching
35.1.4. Solution
35.1.4.1. Rotor Simulation with Fixed-Pitch Using EDM
35.1.4.2. Rotor Simulation with Collective Trimming
35.1.4.3. Rotor Simulation with Collective and Cyclic Trimming
35.1.4.4. Rotor Simulation With Fixed Pitch Using FDM
35.1.4.5. Comparison with Experimental Results
35.1.4.5.1. Rotor Simulation with Fixed Pitch
35.1.4.5.2. Rotor Simulation with Collective and Cyclic Trimming
35.1.5. Summary
35.1.6. References
35.2. Fluent’s Virtual Blade Model Propeller Tutorial
35.2.1. Introduction
35.2.2. Problem Description
35.2.3. Setup
35.2.3.1. Preparation
35.2.3.2. Mesh
35.2.3.3. Enabling the Virtual Blade Model
35.2.3.4. Setup Units
35.2.3.5. Operating Conditions
35.2.3.6. Physical Modeling
35.2.3.7. Materials
35.2.3.8. Boundary Conditions
35.2.3.9. Reference Values
35.2.3.10. Solution Methods and Controls
35.2.3.11. Solution Initialization
35.2.3.12. Rotor Inputs
35.2.3.13. Convergence Monitoring
35.2.3.14. Post-processing Setup
35.2.3.14.1. Cutting Plane for the Velocity Distributions
35.2.3.14.2. Cutting Plane Through Disk Zone for the VBM Data Distributions
35.2.4. Solution
35.2.4.1. Propeller Simulation with Fixed-Pitch
35.2.4.2. Rotor Simulation with Pitch Trimming (Collective Trimming)
35.2.5. Summary
35.2.6. References
36. Fluent GPU External Aero Sedan
36.1. Introduction
36.2. Prerequisites
36.3. Problem Description
36.4. Setup and Solution
36.4.1. Preparation
36.4.2. Reading the Fluent Case File Into the GPU Solver
36.4.3. Models
36.4.4. Solution