The following mathematical functions are available for use with all CEL expressions.
Note:  In the Function column
in the table below, [a] denotes any
dimension of the first operand.
Table 15.1: Standard Mathematical CEL Functions
| 
 Function  | 
 Operand’s Values  | 
 Result’s Dimensions  | 
|---|---|---|
| 
 abs( [a] )  | 
 Any  | 
 [a]  | 
| 
 acos( [ ] )  | 
 
  | 
 Radians  | 
| 
 asin( [ ] )  | 
 
  | 
 Radians  | 
| 
 atan( [ ] )[a]  | 
 Any  | 
 Radians  | 
| 
 atan2( [a], [a] )[a]  | 
 Any  | 
 Radians  | 
| 
 besselJ( [ ], [ ] )[b]  | 
 
  | 
 Dimensionless  | 
| 
 besselY( [ ], [ ] )[b]  | 
 
  | 
 Dimensionless  | 
| 
 cos( [radians] )  | 
 Any  | 
 Dimensionless  | 
| 
 cosh( [ ] )  | 
 Any  | 
 Dimensionless  | 
| 
 exp( [ ] )  | 
 Any  | 
 Dimensionless  | 
| 
 int([ ])[c]  | 
 Dimensionless  | 
 Dimensionless  | 
| 
 loge( [ ] )[d]  | 
 
  | 
 Dimensionless  | 
| 
 log10( [ ] )[e]  | 
 
  | 
 Dimensionless  | 
| 
 min( [a], [a] )  | 
 Any  | 
 [a]  | 
| 
 max( [a], [a] )  | 
 Any  | 
 [a]  | 
| 
 mod( [a], [a] )[f]  | 
 Any  | 
 [a]  | 
| 
 nint([ ])[g]  | 
 Dimensionless  | 
 Dimensionless  | 
| 
 sin( [radians] )  | 
 Any  | 
 Dimensionless  | 
| 
 sinh( [ ] )  | 
 Any  | 
 Dimensionless  | 
| 
 sqrt( [a] )  | 
 
  | 
 [a]^0.5  | 
| 
 step( [ ] ) [h]  | 
 Any  | 
 Dimensionless  | 
| 
 tan( [radians] )[i]  | 
 Any  | 
 Dimensionless  | 
| 
 tanh( [ ] )  | 
 Any  | 
 Dimensionless  | 
[a] atan does not determine the quadrant of the result, but atan2 does.
[b] The value of the first dimensionless operand n, also referred to as the order of the Bessel function, must be an integer (n=0, 1, 2, ....). The second argument is a dimensionless real number.
[c] The int() function truncates the dimensionless argument to its integer part.
Examples:
int(1) = 1
int(2.5) = 2
int(-3.1) = -3
int(-4.8) = -4
The int() function requires a dimensionless argument but will not report an error if the argument of the function has a dimension of radians or degrees.
[d] ln(x) is valid as an alias for loge(x)
[e] log(x) is valid as an alias for log10(x)
[f] mod(x, y) returns the remainder on dividing x by y; the function is not defined for y = 0.
[g] The nint function requires a dimensionless argument and is defined as:
int(x + 0.5) if x >= 0
int(x - 0.5) if x < 0
See the implementation of int( ) function in the table above.
Examples:
nint(2.6) = 3
nint(2.5) = 3
nint(2.4) = 2
nint(1) = 1
nint(-1) = -1
nint(-2.4) = -2
nint(-2.5) = -3
nint(-2.6) = -3
Note that the nint() function will not report an error if the argument of the function has a dimension of radians or degrees.
[h] step(x) is 0 for negative x, 1 for positive x and 0.5 for x=0. x must be dimensionless.
[i] tan(x)
is undefined for x=n/2, where n=1, 3, 5,
...