The following example curve-fitting analyses are available:
- 7.8.1. Example Hyperelastic Curve-Fitting Problems
- 7.8.2. Example Viscoelastic Curve-Fitting Problems
- 7.8.3. Example Plasticity Curve-Fitting Problems
- 7.8.4. Example Geomechanical Curve-Fitting Problems
- 7.8.5. Example Creep Curve-Fitting Problems
- 7.8.6. Example Shape Memory Alloy Curve-Fitting Problems
- 7.8.7. Example Partial Solve Options for Prony Series Models Problem
The following example analyses are available for hyperelasticity curve-fitting:
Example: Parameter-Fitting of a Three-Network Model (TNM)
This example shows the entire curve-fitting process using a TNM. For more information about the material model, see Three-Network Model (TB,TNM) in the Material Reference.
/prep7 *create,tnm-unia.exp /ninp,2 /nout,1 /1,time /2,epto /3,s /engr,0 0.10000E+01 0.19980E-02 0.19581E+01 0.30000E+01 0.59821E-02 0.58641E+01 0.50000E+01 0.99503E-02 0.88782E+01 0.70000E+01 0.13903E-01 0.10434E+02 0.90000E+01 0.17840E-01 0.11819E+02 0.11000E+02 0.21761E-01 0.13122E+02 0.13000E+02 0.25668E-01 0.14350E+02 0.15000E+02 0.29559E-01 0.15508E+02 0.17000E+02 0.33435E-01 0.16597E+02 0.19000E+02 0.37296E-01 0.17617E+02 0.21000E+02 0.41142E-01 0.18562E+02 0.23000E+02 0.44973E-01 0.19421E+02 0.25000E+02 0.48790E-01 0.20183E+02 0.27000E+02 0.52592E-01 0.20837E+02 0.29000E+02 0.56380E-01 0.21380E+02 0.31000E+02 0.60154E-01 0.21818E+02 0.33000E+02 0.63913E-01 0.22165E+02 0.35000E+02 0.67659E-01 0.22440E+02 0.37000E+02 0.71390E-01 0.22662E+02 0.39000E+02 0.75107E-01 0.22845E+02 0.41000E+02 0.78811E-01 0.23001E+02 0.43000E+02 0.82501E-01 0.23141E+02 0.45000E+02 0.86178E-01 0.23268E+02 0.47000E+02 0.89841E-01 0.23388E+02 0.49000E+02 0.93490E-01 0.23503E+02 0.51000E+02 0.97127E-01 0.23615E+02 0.53000E+02 0.10075E+00 0.23725E+02 0.55000E+02 0.10436E+00 0.23834E+02 0.57000E+02 0.10796E+00 0.23942E+02 0.59000E+02 0.11154E+00 0.24050E+02 0.61000E+02 0.11511E+00 0.24158E+02 0.63000E+02 0.11867E+00 0.24266E+02 0.65000E+02 0.12222E+00 0.24374E+02 0.67000E+02 0.12575E+00 0.24482E+02 0.69000E+02 0.12927E+00 0.24590E+02 0.71000E+02 0.13278E+00 0.24699E+02 0.73000E+02 0.13628E+00 0.24807E+02 0.75000E+02 0.13976E+00 0.24916E+02 0.77000E+02 0.14323E+00 0.25025E+02 0.79000E+02 0.14669E+00 0.25133E+02 0.81000E+02 0.15014E+00 0.25243E+02 0.83000E+02 0.15358E+00 0.25351E+02 0.85000E+02 0.15700E+00 0.25460E+02 0.87000E+02 0.16042E+00 0.25569E+02 0.89000E+02 0.16382E+00 0.25677E+02 0.91000E+02 0.16721E+00 0.25786E+02 0.93000E+02 0.17059E+00 0.25894E+02 0.95000E+02 0.17395E+00 0.26003E+02 0.97000E+02 0.17731E+00 0.26111E+02 0.99000E+02 0.18065E+00 0.26219E+02 0.10000E+03 0.18232E+00 0.26273E+02 *end ! Repeat muA = 1e4 tauHatA = 5 mA = 5 ! B muBi = 1e2 muBf = 1e2 beta = 5 tauHatB = 10 mB = 5 ! C muC = 5e3 q = 5 !Flow a = 0.0 n = 1 ! Tdep thetaHat = 0 ! Lock lambdaL = 5.11 ! Bulk kappa = 3000 TB,TNM,1, , ,netA TBDATA,1,muA ! TBDATA, 1 TBDATA,2,tauHatA ! TBDATA, 5 TBDATA,3,mA ! TBDATA, 7 TB,TNM,1, , ,netB TBDATA,1,muBi ! TBDATA, 9 TBDATA,2,muBf ! TBDATA, 10 TBDATA,3,beta ! TBDATA, 11 TBDATA,4,tauHatB ! TBDATA, 12 TBDATA,5,mB ! TBDATA, 13 TB,TNM,1, , ,netC TBDATA,1,muC ! TBDATA, 14 TBDATA,2,q ! TBDATA, 15 TB,TNM,1, , ,flow TBDATA,1,a ! TBDATA, 6 TBDATA,2,n ! TBDATA, 8 TB,TNM,1, , ,TDEP TBDATA,1,thetaHat,0 ! TBDATA, 2 TB,TNM,1, , ,LOCK TBDATA,1,lambdaL ! TBDATA, 3 TB,TNM,1, , ,BULK TBDATA,1,kappa ! TBDATA, 4 ! Define Material tbft,fadd,1,aml,genr,tnmexample ! Define Uniaxial Data tbft,eadd,1,unia,tnm-unia.exp ! Use TBFPLOT to examine the initial fit or change ! the coefficients to get a better fit using the TBFT,SET ! command or modifying the parameters above and running ! the TBFPLOT command again !TBFPLOT,1,'amgenrtnmexample',1,2,3,4 ! Solve tbft,solv,1,aml,genr,tnmexample,1,40 ! Plot TBFPLOT,1,'amgenrtnmexample',1,2,3,4 ! Save to Material database tbft,fset,1,aml,genr,tnmexample
Example: Parameter-Fitting of Prony-Series and Hyperelastic Parameters
This example shows the curve-fitting process involving Prony-series shear parameters with hyperelasticity. The same can be done with volumetric test data if Prony-series bulk parameters need to be estimated.
*create,unia.exp
/1,time
/2,epe
/3,s
/ninp,2
/nout,1
0.10000 0.200000 614620.
0.20000 0.400000 0.103454E+007
0.30000 0.600000 0.134486E+007
0.40000 0.800000 0.158910E+007
0.50000 1.00000 0.179204E+007
0.60000 1.20000 0.196906E+007
0.70000 1.40000 0.213047E+007
0.80000 1.60000 0.228372E+007
0.90000 1.80000 0.243458E+007
1.0000 2.00000 0.258772E+007
11.000 2.00000 0.201025E+007
21.000 2.00000 0.163321E+007
31.000 2.00000 0.138533E+007
41.000 2.00000 0.122123E+007
51.000 2.00000 0.111185E+007
61.000 2.00000 0.103844E+007
71.000 2.00000 988858.0
81.000 2.00000 955160.0
91.000 2.00000 932123.0
101.00 2.00000 916290.0
*end
/prep7
tb,hyper,1, ,3,ogden,
tbdata,1,1e6,1,1e6,2,1e6,-1
tbdata,7,0,0,0
tb,prony,1, ,2,shear
tbdata,,1,10,1,100
tbft,fadd,1,aml,genr,hyprony
tbft,eadd,1,unia,unia.exp
! Fix volumetric terms here.
*DO,iX,7,9,1
tbft,fix,1,aml,genr,hyprony,iX,1
*ENDDO
tbft,solve,1,aml,genr,hyprony,1,200
finish
/exitExample: Parameter-Fitting of Prony-Series and Ogden Hyperfoam
This example shows the multistep curve-fitting process involving the combination of Prony series and Ogden Hyperfoam.
/batch,list
/title,Test multistep curve fitting for hyper(foam)+prony with AML (unia + volu)
/out,scratch
*create,unia_loading.exp
/1,time
/2,epto
/3,elat
/4,s
/ninp,2
/nout,2
0.20000E-02 0.200000E-1 -0.640598E-002 1.25327
0.40000E-02 0.400000E-1 -0.126466E-001 2.39076
0.70000E-02 0.700000E-1 -0.217138E-001 3.91496
0.10333E-01 0.103333 -0.313999E-001 5.40024
0.13667E-01 0.136667 -0.407048E-001 6.71315
0.17000E-01 0.170000 -0.496544E-001 7.89182
0.20333E-01 0.203333 -0.582723E-001 8.96629
0.23667E-01 0.236667 -0.665798E-001 9.96044
0.27000E-01 0.270000 -0.745961E-001 10.8934
0.30333E-01 0.303333 -0.823391E-001 11.7807
0.33667E-01 0.336667 -0.898248E-001 12.6351
0.37000E-01 0.370000 -0.970681E-001 13.4669
0.40333E-01 0.403333 -0.104083 14.2848
0.43667E-01 0.436667 -0.110881 15.0962
0.47000E-01 0.470000 -0.117474 15.9072
0.50333E-01 0.503333 -0.123874 16.7231
0.53667E-01 0.536667 -0.130089 17.5485
0.57000E-01 0.570000 -0.136130 18.3874
0.60333E-01 0.603333 -0.142004 19.2434
0.63667E-01 0.636667 -0.147721 20.1195
0.67000E-01 0.670000 -0.153286 21.0187
0.70333E-01 0.703333 -0.158707 21.9435
0.73667E-01 0.736667 -0.163991 22.8962
0.77000E-01 0.770000 -0.169143 23.8791
0.80333E-01 0.803333 -0.174170 24.8941
0.83667E-01 0.836667 -0.179076 25.9432
0.87000E-01 0.870000 -0.183867 27.0282
0.90333E-01 0.903333 -0.188548 28.1509
0.93667E-01 0.936667 -0.193122 29.3128
0.97000E-01 0.970000 -0.197595 30.5156
0.10000 1.00000 -0.201536 31.6344
*end
*create,unia_relaxation.exp
/1,time
/2,epto
/3,elat
/4,s
/ninp,2
/nout,2
1.0980 1.00000 -0.197370 20.4837
2.0960 1.00000 -0.196105 16.8730
3.5930 1.00000 -0.196251 13.3957
5.2563 1.00000 -0.196819 10.8655
6.9197 1.00000 -0.197311 9.23755
8.5830 1.00000 -0.197767 8.18480
10.246 1.00000 -0.198169 7.50567
11.910 1.00000 -0.198525 7.06737
13.573 1.00000 -0.198839 6.78468
15.236 1.00000 -0.199116 6.60241
16.900 1.00000 -0.199360 6.48496
18.563 1.00000 -0.199576 6.40933
20.226 1.00000 -0.199766 6.36068
21.890 1.00000 -0.199933 6.32942
23.553 1.00000 -0.200080 6.30937
25.216 1.00000 -0.200210 6.29655
26.880 1.00000 -0.200324 6.28838
28.543 1.00000 -0.200425 6.28319
30.206 1.00000 -0.200514 6.27992
31.870 1.00000 -0.200592 6.27788
33.533 1.00000 -0.200661 6.27662
35.196 1.00000 -0.200722 6.27587
36.860 1.00000 -0.200775 6.27542
38.523 1.00000 -0.200822 6.27518
40.186 1.00000 -0.200864 6.27506
41.850 1.00000 -0.200900 6.27501
43.513 1.00000 -0.200932 6.27501
45.176 1.00000 -0.200961 6.27503
46.840 1.00000 -0.200986 6.27507
48.503 1.00000 -0.201008 6.27511
50.000 1.00000 -0.201025 6.27515
*end
*create,volu.exp
/1,time
/2,J
/3,pres
/ninp,2
/nout,1
1.0000 0.988048 0.533650
2.0000 0.976191 0.922889
3.5000 0.958585 1.38169
5.1667 0.939273 1.81653
6.8333 0.920221 2.20284
8.5000 0.901429 2.55911
10.167 0.882894 2.90264
11.833 0.864615 3.24581
13.500 0.846591 3.59780
15.167 0.828818 3.96577
16.833 0.811296 4.35572
18.500 0.794023 4.77303
20.167 0.776996 5.22287
21.833 0.760215 5.71045
23.500 0.743677 6.24132
25.167 0.727381 6.82146
26.833 0.711325 7.45750
28.500 0.695506 8.15686
30.167 0.679924 8.92792
31.833 0.664577 9.78019
33.500 0.649462 10.7245
35.167 0.634578 11.7733
36.833 0.619923 12.9407
38.500 0.605496 14.2431
40.167 0.591294 15.6991
41.833 0.577316 17.3306
43.500 0.563560 19.1624
45.167 0.550024 21.2234
46.833 0.536707 23.5472
48.500 0.523607 26.1727
50.000 0.512000 28.8822
*end
/prep7
TB,HYPER,1,,2,FOAM !Activate 2 parameter Ogden foam data table
TBDATA,1,1. !Define μ1
TBDATA,2,1 !Define α1
TBDATA,3,1 !Define μ2
TBDATA,4,1 !Define α2
TBDATA,5,1 !Define first compressibility parameter
TBDATA,6,1 !Define second compressibility parameter
tb,prony,1, ,2,shear
tbdata,,1,1,1,10
tb,prony,1, ,2,bulk
tbdata,,1,1,1,10
tbft,fadd,1,aml,genr,hyprony !Define material for curve fitting
tbft,eadd,1,unia,unia_loading.exp !Add experimental data from the uniaxial loading test
tbft,aini,1,aml,genr,hyprony !Automatic initialize all coefficients
tbft,eadd,1,unia,unia_relaxation.exp !Add experimental data from the uniaxial relaxation test
tbft,solve,1,aml,genr,hyprony,1,50 !Solve with normalized errors
tbft,eadd,1,volu,volu.exp !Add experimental data from volumetric test
tbft,solve,1,aml,genr,hyprony,1,100 !Solve with normalized errors
cfit,,dflag,fitteddatlist
cfit,,cfname,amgenrhyprony
cfit,,opt,genr
/out
/gopr
cfit,debug
tblist,all,all
fini
/exit Example: Parameter-Fitting of Prony-Series, Shift-Function, and Hyperelastic Parameters
This example shows the curve-fitting process involving automatic initialization for the combination of Prony series, TN shift function, and Mooney-Rivlin hyperelasticity.
/batch,list /title,Test automatic initiation for hyper(Mooney)+prony(biaxial)+TN shift *create,biax_313.exp /temp,313 /1,time /2,epe /3,s /ninp,2 /nout,1 0.20000E-01 0.200000E-001 0.477786E-001 0.40000E-01 0.400000E-001 0.142790 0.70000E-01 0.700000E-001 0.432997 0.10333 0.103333 1.02810 0.13667 0.136667 1.95651 0.17000 0.170000 3.24063 0.20333 0.203333 4.88557 0.23667 0.236667 6.88462 0.27000 0.270000 9.22249 0.30333 0.303333 11.8771 0.33667 0.336667 14.8206 0.37000 0.370000 18.0193 0.40333 0.403333 21.4342 0.43667 0.436667 25.0200 0.47000 0.470000 28.7250 0.50333 0.503333 32.4903 0.53667 0.536667 36.2492 0.57000 0.570000 39.9262 0.60333 0.603333 43.4365 0.63667 0.636667 46.6849 0.67000 0.670000 49.5648 0.70333 0.703333 51.9575 0.73667 0.736667 53.7310 0.77000 0.770000 54.7391 0.80333 0.803333 54.8204 0.83667 0.836667 53.7968 0.87000 0.870000 51.4730 0.90333 0.903333 47.6347 0.93667 0.936667 42.0477 0.97000 0.970000 34.4568 1.0000 1.00000 25.6822 1.9800 1.00000 25.1501 2.9600 1.00000 24.6495 4.4300 1.00000 23.9532 6.0633 1.00000 23.2489 7.6967 1.00000 22.6097 9.3300 1.00000 22.0283 10.963 1.00000 21.4981 12.597 1.00000 21.0134 14.230 1.00000 20.5692 15.863 1.00000 20.1609 17.497 1.00000 19.7846 19.130 1.00000 19.4367 20.763 1.00000 19.1141 22.397 1.00000 18.8141 24.030 1.00000 18.5342 25.663 1.00000 18.2723 27.297 1.00000 18.0263 28.930 1.00000 17.7947 30.563 1.00000 17.5760 32.197 1.00000 17.3687 33.830 1.00000 17.1718 35.463 1.00000 16.9842 37.097 1.00000 16.8049 38.730 1.00000 16.6331 40.363 1.00000 16.4682 41.997 1.00000 16.3094 43.630 1.00000 16.1563 45.263 1.00000 16.0082 46.897 1.00000 15.8648 48.530 1.00000 15.7255 50.000 1.00000 15.6036 *end *create,biax_353.exp /temp,353 /1,time /2,epe /3,s /ninp,2 /nout,1 0.20000E-01 0.200000E-001 0.477739E-001 0.40000E-01 0.400000E-001 0.142767 0.70000E-01 0.700000E-001 0.432893 0.10333 0.103333 1.02777 0.13667 0.136667 1.95573 0.17000 0.170000 3.23909 0.20333 0.203333 4.88286 0.23667 0.236667 6.88024 0.27000 0.270000 9.21586 0.30333 0.303333 11.8676 0.33667 0.336667 14.8074 0.37000 0.370000 18.0018 0.40333 0.403333 21.4115 0.43667 0.436667 24.9913 0.47000 0.470000 28.6893 0.50333 0.503333 32.4468 0.53667 0.536667 36.1971 0.57000 0.570000 39.8647 0.60333 0.603333 43.3648 0.63667 0.636667 46.6022 0.67000 0.670000 49.4706 0.70333 0.703333 51.8514 0.73667 0.736667 53.6127 0.77000 0.770000 54.6085 0.80333 0.803333 54.6776 0.83667 0.836667 53.6424 0.87000 0.870000 51.3076 0.90333 0.903333 47.4596 0.93667 0.936667 41.8645 0.97000 0.970000 34.2675 1.0000 1.00000 25.4898 1.9800 1.00000 24.7518 2.9600 1.00000 24.0754 4.4300 1.00000 23.1632 6.0633 1.00000 22.2747 7.6967 1.00000 21.4977 9.3300 1.00000 20.8146 10.963 1.00000 20.2109 12.597 1.00000 19.6742 14.230 1.00000 19.1941 15.863 1.00000 18.7619 17.497 1.00000 18.3705 19.130 1.00000 18.0136 20.763 1.00000 17.6861 22.397 1.00000 17.3838 24.030 1.00000 17.1029 25.663 1.00000 16.8405 27.297 1.00000 16.5940 28.930 1.00000 16.3612 30.563 1.00000 16.1403 32.197 1.00000 15.9298 33.830 1.00000 15.7285 35.463 1.00000 15.5352 37.097 1.00000 15.3490 38.730 1.00000 15.1691 40.363 1.00000 14.9949 41.997 1.00000 14.8259 43.630 1.00000 14.6615 45.263 1.00000 14.5014 46.897 1.00000 14.3452 48.530 1.00000 14.1926 50.000 1.00000 14.0582 *end *create,biax_393.exp /temp,393 /1,time /2,epe /3,s /ninp,2 /nout,1 0.20000E-01 0.200000E-001 0.477687E-001 0.40000E-01 0.400000E-001 0.142742 0.70000E-01 0.700000E-001 0.432778 0.10333 0.103333 1.02741 0.13667 0.136667 1.95488 0.17000 0.170000 3.23740 0.20333 0.203333 4.87988 0.23667 0.236667 6.87544 0.27000 0.270000 9.20860 0.30333 0.303333 11.8572 0.33667 0.336667 14.7931 0.37000 0.370000 17.9826 0.40333 0.403333 21.3866 0.43667 0.436667 24.9598 0.47000 0.470000 28.6503 0.50333 0.503333 32.3993 0.53667 0.536667 36.1401 0.57000 0.570000 39.7974 0.60333 0.603333 43.2864 0.63667 0.636667 46.5120 0.67000 0.670000 49.3679 0.70333 0.703333 51.7357 0.73667 0.736667 53.4838 0.77000 0.770000 54.4663 0.80333 0.803333 54.5223 0.83667 0.836667 53.4744 0.87000 0.870000 51.1279 0.90333 0.903333 47.2694 0.93667 0.936667 41.6657 0.97000 0.970000 34.0624 1.0000 1.00000 25.2816 1.9800 1.00000 24.3340 2.9600 1.00000 23.4894 4.4300 1.00000 22.3872 6.0633 1.00000 21.3544 7.6967 1.00000 20.4835 9.3300 1.00000 19.7418 10.963 1.00000 19.1034 12.597 1.00000 18.5477 14.230 1.00000 18.0584 15.863 1.00000 17.6227 17.497 1.00000 17.2303 19.130 1.00000 16.8733 20.763 1.00000 16.5451 22.397 1.00000 16.2406 24.030 1.00000 15.9559 25.663 1.00000 15.6877 27.297 1.00000 15.4334 28.930 1.00000 15.1911 30.563 1.00000 14.9590 32.197 1.00000 14.7359 33.830 1.00000 14.5206 35.463 1.00000 14.3125 37.097 1.00000 14.1107 38.730 1.00000 13.9147 40.363 1.00000 13.7240 41.997 1.00000 13.5384 43.630 1.00000 13.3574 45.263 1.00000 13.1807 46.897 1.00000 13.0083 48.530 1.00000 12.8398 50.000 1.00000 12.6914 *end /prep7 c10=1 c01=1 c20=1 c11=1 c02=1 tb,hyper,1,,5,mooney tbdata,1,c10,c01,c20,c11,c02 tbdata,6,0.0 tb,prony,1, ,2,shear tbdata,,1,1,1,10, tb,shift,1,,,TN tbdata,1,1,1 tbft,fadd,1,aml,genr,hyprony tbft,eadd,1,biax,biax_313.exp tbft,eadd,1,biax,biax_353.exp tbft,eadd,1,biax,biax_393.exp tbft,aini,1,aml,genr,hyprony tbft,fix,1,aml,genr,hyprony,6,1 tbft,fix,1,aml,genr,hyprony,11,1 tbft,solve,1,aml,genr,hyprony,1,50 cfit,,dflag,fitteddatlist cfit,,cfname,amgenrhyprony cfit,,opt,genr /out /gopr tblist,all,all cfit,debug finish
Example: Parameter-Fitting for TB,USER with the MXUP Option
This example shows the curve-fitting process involving biaxial data with an implementation of the Mooney-Rivlin material model.
! Save this to usermat.F
subroutine usermat (matId,
& elemId, kmatIntPt, kLayer, kSectPt,
& ldstep,isubst, keycut,
& nDirect, nShear, ncomp, nustatev, nusrprop,
& time, dtime, temp, dtemp,
& stress,ustatev,cJacobi, sedEl,sedPl,epseq,
& Strain, dStrain, epsPl, usrprop, coords,
& var0, defGrad_t, defGrad,
& tsstif, epsZZ, cutFactor,
& pVolDer, var2, var3, var4,
& var5, var6, var7)
c
c*************************************************************************
c*************************************************************************
c *** primary function ***
c hyperelastic user subroutine interface
c this is a Mooney-Rivlin material implementation
c Attention:
c User must define material constitutive law properly
c according to the stress state such as 3D, plane strain
c and axisymmetry, plane stress and 3D/1D beam.
c
c A 3D material constitutive model can be used for
c plane strain and axisymmetry cases.
c
c When using shell elements, a plane stress algorithm
c must be used.
c
c*************************************************************************
c Copyright ANSYS. All Rights Reserved.
c
c input arguments
c ===============
c matId (int,sc,i) material #
c elemId (int,sc,i) element #
c kDomIntPt (int,sc,i) "k"th domain integration point
c kLayer (int,sc,i) "k"th layer
c kSectPt (int,sc,i) "k"th Section point
c ldstep (int,sc,i) load step number
c isubst (int,sc,i) substep number
c nDirect (int,sc,in) # of direct components
c nShear (int,sc,in) # of shear components
c ncomp (int,sc,in) nDirect + nShear
c nstatev (int,sc,i) Number of state variables
c nProp (int,sc,i) Number of material constants
c
c Temp (dp,sc,in) temperature at beginning of
c time increment
c dTemp (dp,sc,in) temperature increment
c Time (dp,sc,in) time at beginning of increment (t)
c dTime (dp,sc,in) current time increment (dt)
c
c Strain (dp,ar(ncomp),i) Strain at beginning of time increment
c dStrain (dp,ar(ncomp),i) Strain increment
c usrprop (dp,ar(nprop),i) Material constants defined by TB,USER
c coords (dp,ar(3),i) current coordinates
c defGrad_t(dp,ar(3,3),i) Deformation gradient at time t
c defGrad (dp,ar(3,3),i) Deformation gradient at time t+dt
c
c input output arguments
c ======================
c stress (dp,ar(ncomp),io) stress
c ustatev (dp,ar(nstatev),io) user-defined state variables
c sedEl (dp,sc,io) elastic work
c sedPl (dp,sc,io) plastic work
c epseq (dp,sc,io) equivalent plastic strain
c epsPl (dp,ar(ncomp),io) plastic strain
c var? (dp,sc,io) not used, they are reserved arguments
c for further development
c
c output arguments
c ================
c keycut (int,sc,o) loading bisect/cut control
c 0 - no bisect/cut
c 1 - bisect/cut
c (factor will be determined by solution control)
c cJacobi (dp,ar(ncomp,ncomp),o) material jacobian matrix
c pVolDer (dp,ar(3),o) derivatives of volumetric potential wrt to J
c pVolDer(1) = dU/dJ
c pVolDer(2) = d^2U/dJ^2
c pVolDer(3) = d^3U/dJ^3
c tsstif (dp,ar(2),o) transverse shear stiffness
c tsstif(1) - Gxz
c tsstif(2) - Gyz
c tsstif(1) is also used to calculate hourglass
c stiffness, this value must be defined when low
c order element, such as 181, 182, 185 with uniform
c integration is used.
c epsZZ (dp,sc,o) strain epsZZ for plane stress,
c define it when accounting for thickness change
c in shell and plane stress states
c cutFactor(dp,sc,o) time step size cut-back factor
c define it if a smaller step size is wished
c recommended value is 0~1
c*************************************************************************
c
c --- parameters
c
#include "impcom.inc"
#include "ansysdef.inc"
c *** debug BLOCK
c#include "locknm.inc"
c integer wrinqr, iott
c external pplock, ppunlock, wrinqr
c
c --- argument list
c
integer debugflag, keycut, upkey,
& ldstep, isubst, ieqitr,
& elemId, kmatIntPt, matId,
& kLayer, kSectPt,
& nDirect, ncomp, nShear,
& nustatev, nusrprop
double precision defGrad_t(3,3), defGrad(3,3),
& coords(3),
& usrprop(nusrprop),
& ustatev(nustatev),
& stress(ncomp),
& pVolDer(3),
& Strain(ncomp),
& epsPl (ncomp),
& dStrain(ncomp),
& cJacobi(ncomp,ncomp)
double precision sedEl, sedPl,
& epseq, epsZZ,tsstif,cutFactor,
& temp, dtemp,
& time, dtime,
& toffst
double precision
& var1, var2, var3, var4,
& var5, var6, var7, var0
double precision Invar(10) , potential, jetc
c
integer mTens, mTens2
parameter (mTens = 6, mTens2 = mTens*mTens)
cc
integer kerr
double precision dperr(3)
external erhandler
c************************************************************************
integer i,j,k,l
c deformation gradient
double precision F(3,3), detF, jac
c cauchy-green tensor
double precision Bbarm(3,3), BBbarm(3,3) !matrix form
c local arguments
double precision Bulk,mu1,mu2,C10,C01,d ! bulk, shear1, shear2. input coefficient
double precision eye(3,3), sigma(3,3), Norm
double precision cJacobiDev(3,3,3,3)
c parameters
double precision zero,one,two,three,four,third,twothird,fourthird
double precision fivethird,half,threehalf,onefourth,threefourth
parameter(zero=0.d0,one=1.d0,two=2.d0,three=3.d0,four=4.d0,
& third=1.d0/3.d0,twothird=2.d0/3.d0,fourthird=4.d0/3.d0,
& fivethird=5.d0/3.d0,half=1.d0/2.d0,threehalf=3.d0/2.d0,
& onefourth=1.d0/4.d0,threefourth=3.d0/4.d0)
c
c===========================================================================
c************** material property ********************
C10 = usrprop(1) !shear1 coefficient
C01 = usrprop(2) !shear2 coefficient
d = usrprop(3) !bulk coefficient
c
mu1 = two*C10 !shear1
mu2 = two*C01 !shear2
c******************************************************
c *** copy a local deformation gradient
F = defGrad
detF = F(1,1) * (F(2,2)*F(3,3) - F(2,3)*F(3,2)) !determinant of deformation gradient
& + F(1,2) * (F(2,3)*F(3,1) - F(2,1)*F(3,3))
& + F(1,3) * (F(2,1)*F(3,2) - F(2,2)*F(3,1))
c *** check for negative detF
if (detF .lt. zero) then
keycut = 1
cutFactor = 0.5d0
dperr(1) = 0.0d0
call erhandler ('usermat',5001,1, 'Negative determinant
& of deformation gradient in usermat.', dperr(1),' ')
goto 900
end if
Norm = detF**(-twothird)
!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!
Bbarm = matmul(F,transpose(F))*Norm
BBbarm = matmul(Bbarm,Bbarm)
Invar(1) = Bbarm(1,1) + Bbarm(2,2) + Bbarm(3,3)
Invar(2) = BBbarm(1,1) + BBbarm(2,2) + BBbarm(3,3)
Invar(2) = half*(Invar(1)**two - Invar(2))
Invar(3) = detF
!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!
eye = zero
eye(1,1) = one
eye(2,2) = eye(1,1)
eye(3,3) = eye(1,1)
c
c===== calculate cauchy stress =====
sigma = mu1/detF*(Bbarm - third*Invar(1)*eye)
& + mu2/detF*(-twothird*Invar(2)*eye + Invar(1)*Bbarm-BBbarm)
stress = zero
stress(1) = sigma(1,1)
stress(2) = sigma(2,2)
stress(3) = sigma(3,3)
stress(4) = sigma(1,2)
if (ncomp .gt. 4) then
stress(5) = sigma(2,3)
stress(6) = sigma(1,3)
end if
c======= material Jacobian (deviatoric part), spatial frame =====
cJacobiDev = zero
cJacobi = zero
Do i = 1,3
Do j = 1,3
Do k = 1,3
Do l = 1,3
cJacobiDev(i,j,k,l) = twothird*mu1/detF*(-eye(i,j)*Bbarm(k,l)
& + third*Invar(1)*eye(i,j)*eye(k,l) - Bbarm(i,j)*eye(k,l)
& + half*Invar(1)*(eye(i,k)*eye(j,l) + eye(i,l)*eye(j,k)))
& + fourthird*mu2/detF*(twothird*Invar(2)*eye(i,j)*eye(k,l)
& - Invar(1)*Bbarm(i,j)*eye(k,l) + BBbarm(i,j)*eye(k,l)
& + half*Invar(2)*(eye(i,k)*eye(j,l) + eye(i,l)*eye(j,k))
& - Invar(1)*eye(i,j)*Bbarm(k,l)
& + threehalf*Bbarm(i,j)*Bbarm(k,l)
& + eye(i,j)*BBbarm(k,l) - threefourth*(Bbarm(i,k)*Bbarm(j,l)
& + Bbarm(i,l)*Bbarm(j,k)))
end do
end do
end do
end do
c convert 4th order stiffness tensor to matrix
do i=1,3
do j=i,3
cJacobi(i,j)=cJacobiDev(i,i,j,j)
end do
end do
cJacobi(1,4)=cJacobiDev(1,1,1,2)
cJacobi(2,4)=cJacobiDev(2,2,1,2)
cJacobi(3,4)=cJacobiDev(3,3,1,2)
cJacobi(4,4)=cJacobiDev(1,2,1,2)
if (ncomp .gt. 4) then
cJacobi(5,5)=cJacobiDev(2,3,2,3)
cJacobi(6,6)=cJacobiDev(1,3,1,3)
cJacobi(1,5)=cJacobiDev(1,1,2,3)
cJacobi(1,6)=cJacobiDev(1,1,1,3)
cJacobi(2,5)=cJacobiDev(2,2,2,3)
cJacobi(2,6)=cJacobiDev(2,2,1,3)
cJacobi(3,5)=cJacobiDev(3,3,2,3)
cJacobi(3,6)=cJacobiDev(3,3,1,3)
cJacobi(4,5)=cJacobiDev(1,2,2,3)
cJacobi(4,6)=cJacobiDev(1,2,1,3)
cJacobi(5,6)=cJacobiDev(2,3,1,3)
end if
do i=1,ncomp
do j=i,ncomp
cJacobi(j,i)=cJacobi(i,j)
end do
end do
c====================================================
potential = half*mu1*(Invar(1)-three) + half*mu2*(Invar(2)-three)
if(d .gt. 0.0d0) then
Bulk = two/d
jac = stress(ncomp+1)
potential = potential + 0.5d0*Bulk*(jac-1.0d0)*(jac-1.0d0) ! volumetric part
pVolDer(1) = Bulk*(jac-1.0d0)
pVolDer(2) = Bulk
pVolDer(3) = 0.0d0
else
c *** incompressible behavior
pVolDer(1) = 0.0d0
pVolDer(2) = 0.0d0
pVolDer(3) = 0.0d0
end if
sedEl = potential
900 continue
return
end
c ================================================================
c Start of Mechanical APDL command script
c ================================================================
/upf,usermat.F
*create,samplebiax.exp
/ninp,2
/nout,1
/1,time
/2,epto
/3,s
0.50000E-01 0.487902E-001 32.1549
0.10000 0.953102E-001 62.8876
0.15000 0.139762 92.5075
0.20000 0.182322 121.263
0.25000 0.223144 149.355
0.30000 0.262364 176.949
0.35000 0.300105 204.180
0.40000 0.336472 231.819
0.45000 0.371564 258.552
0.50000 0.405465 285.230
0.55000 0.438255 311.909
0.60000 0.470004 338.648
0.65000 0.500775 365.494
0.70000 0.530628 392.488
0.75000 0.559616 419.666
0.80000 0.587787 447.058
0.85000 0.615186 474.693
0.90000 0.641854 502.593
0.95000 0.667829 530.787
1.0000 0.693147 559.349
*end
/prep7
! coefficients need to be initialized to good
! starting point.
tb,user,1,1,3,MXUP
tbdata,1,1.1,1.1,0.0
tblis,all,all,
! Define Material
tbft,fadd,1,aml,genr,umatexample
! Define Biaxial Data
tbft,eadd,1,biax,samplebiax.exp
tbft,list,1
tbft,solve,1,aml,genr,umatexample,1,10
tbft,fset,1,aml,genr,umatexample
tblis,all,all
fini
/exit,nosaveExample: Parameter-Fitting for Anisotropic Hyperelastic Material Models
This example shows the curve-fitting process involving uniaxial data provided in loading in three directions and fit with the anisotropic hyperelasticity model.
/batch,list /title, Test Case for hyper anisotropic hyper parameter fitting *create,unia-0.exp /ninp,1 /nout,1 /1,epto /2,s 2.E-02 0.372911626 3.E-02 0.561464662 4.E-02 0.751869561 5.E-02 0.944493564 6.E-02 1.13972783 7.E-02 1.33798999 8.E-02 1.53972694 9.E-02 1.74541767 0.1 1.95557687 0.11 2.17075877 0.12 2.39156083 0.13 2.61862899 0.14 2.85266247 0.15 3.09441971 0.16 3.3447247 0.17 3.60447474 0.18 3.87464766 0.19 4.15631205 0.2 4.4506358 0.21 4.75889915 0.22 5.08250685 0.23 5.42300216 0.24 5.78208387 0.25 6.16162383 0.26 6.56368948 0.27 6.99056442 0.28 7.44477862 0.29 7.92913479 0.3 8.44674479 0.31 9.00106954 0.32 9.59595998 0.33 10.2357127 0.34 10.9251215 0.35 11.6695496 0.36 12.4750004 0.37 13.3482085 0.38 14.2967338 0.39 15.3290857 0.4 16.4548412 0.41 17.6848138 0.42 19.0312142 0.43 20.5078657 0.44 22.1304339 0.45 23.9167057 0.46 25.8869031 0.47 28.0640583 0.48 30.4744497 0.49 33.1481028 0.5 36.1193919 *end *create,unia-60.exp /ninp,1 /nout,1 /1,epto /2,s /xcsys,euler,60,0,0 2.E-02 0.455060799 3.E-02 0.686417207 4.E-02 0.920708869 5.E-02 1.15824279 6.E-02 1.39934226 7.E-02 1.6443478 8.E-02 1.89361905 9.E-02 2.14753559 0.1 2.406499 0.11 2.67093476 0.12 2.9412938 0.13 3.21805489 0.14 3.50172707 0.15 3.7928519 0.16 4.09200615 0.17 4.39980503 0.18 4.71690569 0.19 5.04400959 0.2 5.38186789 0.21 5.73128448 0.22 6.09312092 0.23 6.46830202 0.24 6.85782055 0.25 7.262743 0.26 7.68421756 0.27 8.1234797 0.28 8.58186107 0.29 9.06079877 0.3 9.56184178 0.31 10.0866667 0.32 10.637084 0.33 11.215054 0.34 11.8227015 0.35 12.4623275 0.36 13.1364302 0.37 13.847723 0.38 14.5991541 0.39 15.3939313 0.4 16.2355486 0.41 17.12781 0.42 18.0748704 0.43 19.0812605 0.44 20.1519336 0.45 21.2923088 0.46 22.5083156 0.47 23.8064515 0.48 25.1938449 0.49 26.6783191 0.5 28.2684707 *end *create,unia-90.exp /ninp,1 /nout,1 /1,epto /2,s /xcsys,euler,90,0,0 2.E-02 0.272091551 3.E-02 0.408001008 4.E-02 0.544051933 5.E-02 0.680414049 6.E-02 0.817253696 7.E-02 0.954734401 8.E-02 1.09301687 9.E-02 1.2322596 0.1 1.37261915 0.11 1.51425073 0.12 1.65730807 0.13 1.80194439 0.14 1.9483124 0.15 2.09656568 0.16 2.2468581 0.17 2.39934476 0.18 2.5541831 0.19 2.71153308 0.2 2.87155782 0.21 3.03442451 0.22 3.20030524 0.23 3.36937759 0.24 3.54182563 0.25 3.71784023 0.26 3.8976215 0.27 4.08137772 0.28 4.26932806 0.29 4.46170182 0.3 4.65874213 0.31 4.86070404 0.32 5.06785845 0.33 5.28049157 0.34 5.49890727 0.35 5.72342721 0.36 5.95439406 0.37 6.19217227 0.38 6.43715003 0.39 6.68973861 0.4 6.95037999 0.41 7.21954261 0.42 7.49772779 0.43 7.78547011 0.44 8.08334156 0.45 8.39195306 0.46 8.71195709 0.47 9.04405291 0.48 9.38898836 0.49 9.74756341 0.5 10.1206368 *end /prep7 TB,AHYPER,1,,10,EXP !expo TBDATA,1, 10, 0, 0, 0, 0, 0 TBDATA,7, 1, 0.1, 1.1, 0.3 ! AVEC and BVEC are known TB,AHYPER,1,,,AVEC ! = 0 degree TBDATA,1, 1, 0, 0 TB,AHYPER,1,,,BVEC ! =60 degree TBDATA,1, 0.5, 0.8660254, 0 !TBDATA,1, 0, 1, 0 TB,AHYPER,1,,,PVOL TBDATA,1, 0 tblis,all,all ! Define Material tbft,fadd,1,aml,genr,example ! Define Uniaxial Data tbft,eadd,1,unia,unia-0.exp tbft,eadd,1,unia,unia-60.exp tbft,eadd,1,unia,unia-90.exp *do,iX,2,6,1 tbft,fix,1,aml,genr,example,iX,1 *enddo *do,iX,11,17,1 tbft,fix,1,aml,genr,example,iX,1 *enddo tbft,solv,1,aml,genr,example,1,20 tbft,list,1 tbft,fset,1,aml,genr,example /out /gopr tblis,all,all /exit
The following example analyses are available for viscoelasticity curve-fitting:
Example: Prony-Fitting in Time Domain
/com, curve-fitting prony series shear modulus with npts = 3
*create,sdec-1.exp
0.00001 2993.40
0.01 2993.38
1 2991.94
2 2990.49
4 2987.63
6 2984.82
8 2982.06
10 2979.34
20 2966.38
40 2943.40
60 2923.80
80 2907.02
100 2892.62
200 2844.66
400 2801.44
600 2776.87
800 2756.33
1000 2737.32
2000 2656.10
4000 2542.39
6000 2467.97
8000 2414.97
10000 2373.92
20000 2234.36
40000 2056.05
60000 1946.64
80000 1879.31
100000 1837.87
200000 1777.41
400000 1771.61
600000 1771.56
800000 1771.56
1000000 1771.56
*end
/prep7
tb,elas,1
tbdat,,8971.51500,0.499000000
tb,prony, 1, 1, 3,shea
tbdata,1,8.031872e-02,5.116459e+01,6.070276e-01
tbdata,4,7.126442e+02,8.509530e-01,9.119234e+03
tblis,all,all
/prep7
! define relaxation modulus vs time data
tbft,eadd,1,sdec,sdec-1.exp
! define material
tbft,fadd,1,aml,genr,prexample
tbft,list,1
tbft,set,1,aml,genr,prexample,1, 2e-1
tbft,set,1,aml,genr,prexample,2, 1e1
tbft,set,1,aml,genr,prexample,3, 2e-1
tbft,set,1,aml,genr,prexample,4, 1e2
tbft,set,1,aml,genr,prexample,5, 2e-1
tbft,set,1,aml,genr,prexample,6, 1e3
tbft,set,1,aml,genr,prexample,7,8971.51500
tbft,set,1,aml,genr,prexample,8,0.499000000
tbft,fix,1,aml,genr,prexample, 7, 1
tbft,fix,1,aml,genr,prexample, 8, 1
tbft,solve,1,aml,genr,prexample,1,100
tbft,fset,1,aml,genr,prexample
/out
/gopr
tblis,all,all
fini
/exitExample: Prony-Fitting in Frequency Domain
/com, test case for Prony series with exp data in freq domain (shear 5 terms) *create,mod.exp /ninp,1 /nout,2 /1,freq /2,srmd /3,simd 0.1 2991.312875 14.89594278 0.5 2992.452151 2.999592077 1 2992.488035 1.500117359 2 2992.497009 0.750098857 5 2992.499521 0.300044043 10 2992.49988 0.150022343 15 2992.499947 0.100014935 20 2992.49997 0.075011212 25 2992.499981 0.060008973 30 2992.499987 0.050007479 35 2992.49999 0.042863555 40 2992.499993 0.037505611 45 2992.499994 0.033338321 50 2992.499995 0.030004489 55 2992.499996 0.027276808 60 2992.499997 0.025003741 65 2992.499997 0.023080377 70 2992.499998 0.021431778 75 2992.499998 0.020002993 80 2992.499998 0.018752806 85 2992.499998 0.0176497 90 2992.499999 0.016669161 95 2992.499999 0.015791837 100 2992.499999 0.015002245 *end /prep7 tb,elas,1 tbdat,,7782.834,0.3 tb,prony,1,,5,shear tbdata,1,5.03E-02,1.12E+02 tbdata,3,1.07E-01,3.13E+03 tbdata,5,2.51e-01,4.12E+04 tbdata,7,6.01e-1,9.5401E+04 tbdata,9,9.03e-1,1.6E+05 tbft,eadd,1,sdec,mod.exp ! Define constitutive function tbft,fadd,1,aml,genr,myprony tbft,set,1,aml,genr,myprony,1,0.01 tbft,set,1,aml,genr,myprony,2,100 tbft,set,1,aml,genr,myprony,3,0.01 tbft,set,1,aml,genr,myprony,4,1000 tbft,set,1,aml,genr,myprony,5,0.01 tbft,set,1,aml,genr,myprony,6,10000 tbft,set,1,aml,genr,myprony,7,0.01 tbft,set,1,aml,genr,myprony,8,100000 tbft,set,1,aml,genr,myprony,9,0.01 tbft,set,1,aml,genr,myprony,10,200000 tbft,fix,1,aml,genr,myprony,11,1 tbft,fix,1,aml,genr,myprony,12,1 tbft,solve,1,aml,genr,myprony,1,200 tbft,fset,1,aml,genr,myprony, /out tblis,all,all ! Plot Commands. Plotting Column Real Modulii tbfplot,1,'amgenrmyprony',1,1,2,4 ! Plot Commands. Plotting Column Real Modulii tbfplot,1,'amgenrmyprony',1,1,3,5
The following example analyses are available for plasticity curve-fitting:
Example: Parameter-Fitting of Temperature-Dependent Chaboche with Isotropic Elastic Material
/prep7
*create,a0.exp
/1,epto
/2,s
/temp,0
0.0 0.0
0.280000E-004 4.20000
0.560000E-004 8.40000
0.980000E-004 14.7000
0.144667E-003 21.7000
0.191333E-003 28.7000
0.238000E-003 35.7000
0.284667E-003 42.7000
0.331333E-003 49.7000
0.378000E-003 56.7000
0.424667E-003 63.7000
0.471333E-003 70.7000
0.518000E-003 77.7000
0.564667E-003 84.7000
0.611333E-003 91.7000
0.658000E-003 98.7000
0.704667E-003 105.700
0.751333E-003 112.700
0.798000E-003 119.700
0.844667E-003 126.700
0.891333E-003 133.700
0.938000E-003 140.700
0.984667E-003 147.700
0.133563E-002 154.700
0.212038E-002 161.700
0.450136E-002 168.700
0.123396E-001 175.700
0.213894E-001 182.700
0.312338E-001 189.700
0.420265E-001 196.700
0.539708E-001 203.700
0.659320E-001 210.000
0.659040E-001 205.800
0.658760E-001 201.600
0.658340E-001 195.300
0.657873E-001 188.300
0.657407E-001 181.300
0.656940E-001 174.300
0.656473E-001 167.300
0.656007E-001 160.300
0.655540E-001 153.300
0.655073E-001 146.300
0.654607E-001 139.300
0.654140E-001 132.300
0.653673E-001 125.300
0.653207E-001 118.300
0.652740E-001 111.300
0.652273E-001 104.300
0.651807E-001 97.3000
0.651340E-001 90.3000
0.650873E-001 83.3000
0.650407E-001 76.3000
0.649940E-001 69.3000
0.649473E-001 62.3000
0.649007E-001 55.3000
0.648540E-001 48.3000
0.648073E-001 41.3000
0.647607E-001 34.3000
0.647140E-001 27.3000
0.646673E-001 20.3000
0.646207E-001 13.3000
0.645740E-001 6.29999
0.645320E-001 0.0
*end
*create,a100.exp
/1,epto
/2,s
/temp,100
0.0 0.0
0.323077E-004 4.20000
0.646154E-004 8.40000
0.113077E-003 14.7000
0.166923E-003 21.7000
0.220769E-003 28.7000
0.274615E-003 35.7000
0.328462E-003 42.7000
0.382308E-003 49.7000
0.436154E-003 56.7000
0.490000E-003 63.7000
0.543846E-003 70.7000
0.597692E-003 77.7000
0.651538E-003 84.7000
0.705385E-003 91.7000
0.759231E-003 98.7000
0.813077E-003 105.700
0.866923E-003 112.700
0.920769E-003 119.700
0.974615E-003 126.700
0.129273E-002 133.700
0.214756E-002 140.700
0.490863E-002 147.700
0.136491E-001 154.700
0.235799E-001 161.700
0.344051E-001 168.700
0.463026E-001 175.700
0.595099E-001 182.700
0.743532E-001 189.700
0.912979E-001 196.700
0.111042 203.700
0.121114 206.850
0.132113 210.000
0.132080 205.800
0.132048 201.600
0.131999 195.300
0.131946 188.300
0.131892 181.300
0.131838 174.300
0.131784 167.300
0.131730 160.300
0.131676 153.300
0.131623 146.300
0.131569 139.300
0.131515 132.300
0.131461 125.300
0.131407 118.300
0.131353 111.300
0.131299 104.300
0.131246 97.3000
0.131192 90.3000
0.131138 83.3000
0.131084 76.3000
0.131030 69.3000
0.130976 62.3000
0.130923 55.3000
0.130869 48.3000
0.130815 41.3000
0.130761 34.3000
0.130707 27.3000
0.130653 20.3000
0.130599 13.3000
0.130546 6.30001
0.130497 0.0
*end
*create,a200.exp
/1,epto
/2,s
/temp,200
0.0 0.0
0.350000E-004 4.20000
0.700000E-004 8.40000
0.122500E-003 14.7000
0.180833E-003 21.7000
0.239167E-003 28.7000
0.297500E-003 35.7000
0.355833E-003 42.7000
0.414167E-003 49.7000
0.472500E-003 56.7000
0.530833E-003 63.7000
0.589167E-003 70.7000
0.647500E-003 77.7000
0.705833E-003 84.7000
0.764167E-003 91.7000
0.822500E-003 98.7000
0.880833E-003 105.700
0.939167E-003 112.700
0.997500E-003 119.700
0.167134E-002 126.700
0.326455E-002 133.700
0.107655E-001 140.700
0.213294E-001 147.700
0.328598E-001 154.700
0.455505E-001 161.700
0.596628E-001 168.700
0.755578E-001 175.700
0.937543E-001 182.700
0.115037 189.700
0.133758 194.950
0.149894 198.887
0.163523 201.841
0.174814 204.055
0.184003 205.717
0.191367 206.962
0.197188 207.897
0.201738 208.598
0.206459 209.298
0.211372 210.000
0.211337 205.800
0.211302 201.600
0.211249 195.300
0.211191 188.300
0.211133 181.300
0.211074 174.300
0.211016 167.300
0.210958 160.300
0.210899 153.300
0.210841 146.300
0.210783 139.300
0.210724 132.300
0.210666 125.300
0.210608 118.300
0.210549 111.300
0.210491 104.300
0.210433 97.3000
0.210374 90.3000
0.210316 83.3000
0.210258 76.3000
0.210199 69.3000
0.210141 62.3000
0.210083 55.3000
0.210024 48.3000
0.209966 41.3000
0.209908 34.3000
0.209849 27.3000
0.209791 20.3000
0.209733 13.3000
0.209674 6.30000
0.209622 0.0
*end
! Enter the elastic properties. If you have data for 3 temperatures, enter Young's modulus and
! mu for each temperature
tb,elas,1
tbtemp,0
tbdat,,1.5e5,0.3
tbtemp,100
tbdat,,1.3e5,0.3
tbtemp,200
tbdat,,1.2e5,0.3
! Define the Chaboche material property order 3
tb,chab,1,2,2
tbtemp,0
tbdata,1,150,1,1,1,1
tbtemp,100
tbdata,1,130,1,1,1,1
tbtemp,200
tbdata,1,120,1,1,1,1
! Import material parameters
tbft,fadd,1,aml,genr,myfit
! Add experimental data
tbft,eadd,1,unia,a0.exp
tbft,eadd,1,unia,a100.exp
tbft,eadd,1,unia,a200.exp
! Automatically initialize the parameters
tbft,aini,1,aml,genr,myfit
! List the properties and experimental data
tbft,list,1
! Solve for Parameters
tbft,solve,1,aml,genr,myfit,1,100
! Plot
! TPLT,materialid,'amgenrmyfit',EXPINDEX,COLX,COLY1,COLY2
! COLY1 is stress here
! COLY2 = NCOL+1 has the calculated stress value
TBFPLOT,1,'amgenrmyfit',3,1,2,3
! Export to TB table database
tbft,fset,1,aml,genr,myfit
tblis,all,all
fini
/exit
Example: Parameter-Fitting of Three-Term Kinematic Static Recovery Parameters with Known Chaboche Parameters
/prep7
/out,scratch
*create,c1.exp
/ninp,2
/1,time
/2,epto
/3,s
0.20000E-01 0.133333E-004 0.400000
0.40000E-01 0.266667E-004 0.800000
0.70000E-01 0.466667E-004 1.40000
0.11500 0.766667E-004 2.30000
0.16500 0.110000E-003 3.30000
0.21500 0.143333E-003 4.30000
0.26500 0.176667E-003 5.30000
0.31500 0.210000E-003 6.30000
0.36500 0.243333E-003 7.30000
0.41500 0.276667E-003 8.30000
0.46500 0.310000E-003 9.30000
0.51500 0.343333E-003 10.3000
0.56500 0.376667E-003 11.3000
0.61500 0.410000E-003 12.3000
0.66500 0.443333E-003 13.3000
0.71500 0.476667E-003 14.3000
0.76500 0.510000E-003 15.3000
0.81500 0.543333E-003 16.3000
0.86500 0.576667E-003 17.3000
0.91500 0.610000E-003 18.3000
0.96500 0.643484E-003 19.3000
1.0000 0.671643E-003 19.9999
1.0200 0.658311E-003 19.6000
1.0400 0.644978E-003 19.2000
1.0700 0.624978E-003 18.6000
1.1150 0.594978E-003 17.7000
1.1650 0.561645E-003 16.7000
1.2150 0.528311E-003 15.7000
1.2650 0.494978E-003 14.7000
1.3150 0.461645E-003 13.7000
1.3650 0.428312E-003 12.7000
1.4150 0.394978E-003 11.7000
1.4650 0.361645E-003 10.7000
1.5150 0.328312E-003 9.70000
1.5650 0.294978E-003 8.70000
1.6150 0.261645E-003 7.70000
1.6650 0.228312E-003 6.70000
1.7150 0.194978E-003 5.70000
1.7650 0.161645E-003 4.70000
1.8150 0.128312E-003 3.70000
1.8650 0.949782E-004 2.70000
1.9150 0.616448E-004 1.70000
1.9650 0.283115E-004 0.700000
2.0000 0.497818E-005 0.0
2.0200 0.216448E-004 0.500000
2.0400 0.383115E-004 1.00000
2.0700 0.633115E-004 1.75000
2.1150 0.100812E-003 2.87500
2.1650 0.142478E-003 4.12500
2.2150 0.184145E-003 5.37500
2.2650 0.225812E-003 6.62500
2.3150 0.267478E-003 7.87500
2.3650 0.309145E-003 9.12500
2.4150 0.350812E-003 10.3750
2.4650 0.392478E-003 11.6250
2.5150 0.434145E-003 12.8750
2.5650 0.475812E-003 14.1250
2.6150 0.517478E-003 15.3750
2.6650 0.559145E-003 16.6250
2.7150 0.600812E-003 17.8750
2.7650 0.642534E-003 19.1250
2.8150 0.704785E-003 20.3750
2.8650 0.819971E-003 21.6250
2.9150 0.941276E-003 22.8749
2.9650 0.106968E-002 24.1250
3.0000 0.116447E-002 24.9999
3.0200 0.114780E-002 24.5000
3.0400 0.113114E-002 24.0000
3.0700 0.110614E-002 23.2500
3.1150 0.106864E-002 22.1250
3.1650 0.102697E-002 20.8750
3.2150 0.985304E-003 19.6250
3.2650 0.943637E-003 18.3750
3.3150 0.901971E-003 17.1250
3.3650 0.860304E-003 15.8750
3.4150 0.818637E-003 14.6250
3.4650 0.776971E-003 13.3750
3.5150 0.735304E-003 12.1250
3.5650 0.693637E-003 10.8750
3.6150 0.651971E-003 9.62500
3.6650 0.610304E-003 8.37500
3.7150 0.568637E-003 7.12500
3.7650 0.526971E-003 5.87500
3.8150 0.485304E-003 4.62500
3.8650 0.443637E-003 3.37500
3.9150 0.401971E-003 2.12500
3.9650 0.360304E-003 0.875000
4.0000 0.331137E-003 0.0
4.0200 0.347804E-003 0.500000
4.0400 0.364471E-003 1.00000
4.0700 0.389471E-003 1.75000
4.1150 0.426971E-003 2.87500
4.1650 0.468637E-003 4.12500
4.2150 0.510304E-003 5.37500
4.2650 0.551971E-003 6.62500
4.3150 0.593637E-003 7.87500
4.3650 0.635304E-003 9.12500
4.4150 0.676971E-003 10.3750
4.4650 0.718637E-003 11.6250
4.5150 0.760304E-003 12.8750
4.5650 0.801971E-003 14.1250
4.6150 0.843637E-003 15.3750
4.6650 0.885304E-003 16.6250
4.7150 0.926971E-003 17.8750
4.7650 0.968637E-003 19.1250
4.8150 0.101030E-002 20.3750
4.8650 0.105197E-002 21.6250
4.9150 0.109364E-002 22.8750
4.9650 0.113566E-002 24.1250
5.0000 0.120757E-002 25.0000
5.9000 0.123388E-002 24.9984
6.8000 0.125713E-002 25.0001
8.1500 0.129081E-002 25.0002
10.175 0.134091E-002 25.0001
12.425 0.139638E-002 25.0000
14.675 0.145174E-002 25.0000
16.925 0.150703E-002 25.0000
19.175 0.156229E-002 25.0000
21.425 0.161752E-002 25.0000
23.675 0.167273E-002 25.0000
25.925 0.172794E-002 25.0000
28.175 0.178314E-002 25.0000
30.425 0.183834E-002 25.0000
32.675 0.189353E-002 25.0000
34.925 0.194872E-002 25.0000
37.175 0.200392E-002 25.0000
39.425 0.205911E-002 25.0000
41.675 0.211430E-002 25.0000
43.925 0.216949E-002 25.0000
46.175 0.222468E-002 25.0000
48.425 0.227987E-002 25.0000
50.000 0.231850E-002 25.0000
*end
! Add the material properties. Elastic, Chaboche and initial values for kinematic static recovery
! For kinematic static recovery, the recommended values for Mi are large numbers while the recommended
! values for mi are small numbers slightly greater than 1.
young = 30e3
poiss = 0.3
sigy = 18
tb,elas,1
tbdat,,young,poiss
tb,chab,1,,3,TRATE
tbdata,1,18.8,4.3367e6, 3.77e6, 8.981e3,9.47778e2
tbdata,6, 9.8895e2,9.9446
tb,plastic,1,,3,KSR2
tbdata,1,10000,1.5,10000,1.5
tbdata,5, 10000,1.5
tblis,all,all
! Import the material parameter to the tbft command object
tbft,fadd,1,aml,genr,ratetest
! List the parameters to see the imported data and examine where
! the parameters are stored (index of the parameters)
tbft,list,1
! Add experimental data
tbft,eadd,1,unia,c1.exp
! Parameter 1 to 7 are Chaboche parameters. They can be fixed because
! they were previously calculated
tbft,fix,1,aml,genr,ratetest,1,1
tbft,fix,1,aml,genr,ratetest,2,1
tbft,fix,1,aml,genr,ratetest,3,1
tbft,fix,1,aml,genr,ratetest,4,1
tbft,fix,1,aml,genr,ratetest,5,1
tbft,fix,1,aml,genr,ratetest,6,1
tbft,fix,1,aml,genr,ratetest,7,1
! Young's Modulus and Poisson's Ratio are fixed automatically
! Solve for parameters
tbft,solve,1,aml,genr,ratetest,1,100
! Plot
! TBFPLOT,materialid,'amgenrratetest',EXPINDEX,COLX,COLY1,COLY2,COLYY3
! COLX is time here
! COLY1 is set to 3 and has the experimental stress value
! COLY2 = COLYY1+1 has the calculated stress value
TBFPLOT,1,'amgenrratetest',3,1,3,4
! Save to TB database and list
tbft,fset,1,aml,genr,ratetest
tblis,all,all
/out
fini
/exit
Example: Parameter-Fitting of Three-Term Kinematic Static Recovery Parameters with Rate-Dependence Using the Multistep-Solve Option
/prep7
*create,PERZYNA-u-rate250.exp
/ninp,2
/nout,1
/1,TIME
/2,EPTO
/3,S
/khar,1
/rate,1
0.20000E-05 0.100000E-002 26.2999
0.40000E-05 0.200000E-002 46.7484
0.60000E-05 0.300000E-002 55.4562
0.80000E-05 0.400000E-002 58.8877
0.10000E-04 0.500000E-002 60.5450
0.12000E-04 0.600000E-002 61.6600
0.14000E-04 0.700000E-002 62.5379
0.16000E-04 0.800000E-002 63.2573
0.18000E-04 0.900000E-002 63.8510
0.20000E-04 0.100000E-001 64.3409
0.24000E-04 0.800000E-002 11.7409
0.28000E-04 0.600000E-002 -33.4499
0.32000E-04 0.400000E-002 -51.6628
0.36000E-04 0.200000E-002 -57.2154
0.40000E-04 0.00000 -60.2273
0.44000E-04 -0.200000E-002 -62.2638
0.48000E-04 -0.400000E-002 -63.6620
0.52000E-04 -0.600000E-002 -64.6161
0.56000E-04 -0.800000E-002 -65.2636
0.60000E-04 -0.100000E-001 -65.7014
0.64000E-04 -0.800000E-002 -13.1014
0.68000E-04 -0.600000E-002 32.1335
0.72000E-04 -0.400000E-002 50.6189
0.76000E-04 -0.200000E-002 56.4732
0.80000E-04 0.00000 59.7074
0.84000E-04 0.200000E-002 61.9040
0.88000E-04 0.400000E-002 63.4153
0.92000E-04 0.600000E-002 64.4482
0.96000E-04 0.800000E-002 65.1499
0.10000E-03 0.100000E-001 65.6246
*end
*create,PERZYNA-u-rate2500.exp
/ninp,2
/nout,1
/1,TIME
/2,EPTO
/3,S
/khar,1
/rate,1
0.20000E-06 0.100000E-002 26.3000
0.40000E-06 0.200000E-002 49.4592
0.60000E-06 0.300000E-002 60.6917
0.80000E-06 0.400000E-002 65.2738
0.10000E-05 0.500000E-002 67.3054
0.12000E-05 0.600000E-002 68.5463
0.14000E-05 0.700000E-002 69.4871
0.16000E-05 0.800000E-002 70.2511
0.18000E-05 0.900000E-002 70.8805
0.20000E-05 0.100000E-001 71.3999
0.24000E-05 0.800000E-002 18.7999
0.28000E-05 0.600000E-002 -31.1323
0.32000E-05 0.400000E-002 -55.7260
0.36000E-05 0.200000E-002 -63.2645
0.40000E-05 0.00000 -66.7236
0.44000E-05 -0.200000E-002 -68.9835
0.48000E-05 -0.400000E-002 -70.5324
0.52000E-05 -0.600000E-002 -71.5911
0.56000E-05 -0.800000E-002 -72.3106
0.60000E-05 -0.100000E-001 -72.7974
0.64000E-05 -0.800000E-002 -20.1974
0.68000E-05 -0.600000E-002 29.7540
0.72000E-05 -0.400000E-002 54.5620
0.76000E-05 -0.200000E-002 62.4264
0.80000E-05 0.00000 66.1342
0.84000E-05 0.200000E-002 68.5742
0.88000E-05 0.400000E-002 70.2511
0.92000E-05 0.600000E-002 71.3993
0.96000E-05 0.800000E-002 72.1805
0.10000E-04 0.100000E-001 72.7096
*end
*create,PERZYNA-u-rate25.exp
/ninp,2
/nout,1
/1,TIME
/2,EPTO
/3,S
/khar,1
/rate,1
0.20000E-04 0.100000E-002 26.2995
0.40000E-04 0.200000E-002 43.9886
0.60000E-04 0.300000E-002 50.9383
0.80000E-04 0.400000E-002 53.6832
0.10000E-03 0.500000E-002 55.1331
0.12000E-03 0.600000E-002 56.1725
0.14000E-03 0.700000E-002 57.0069
0.16000E-03 0.800000E-002 57.6935
0.18000E-03 0.900000E-002 58.2603
0.20000E-03 0.100000E-001 58.7280
0.24000E-03 0.800000E-002 6.12797
0.28000E-03 0.600000E-002 -33.9514
0.32000E-03 0.400000E-002 -47.7176
0.36000E-03 0.200000E-002 -52.2745
0.40000E-03 0.00000 -55.0163
0.44000E-03 -0.200000E-002 -56.8940
0.48000E-03 -0.400000E-002 -58.1823
0.52000E-03 -0.600000E-002 -59.0602
0.56000E-03 -0.800000E-002 -59.6555
0.60000E-03 -0.100000E-001 -60.0575
0.64000E-03 -0.800000E-002 -7.45753
0.68000E-03 -0.600000E-002 32.6973
0.72000E-03 -0.400000E-002 46.7671
0.76000E-03 -0.200000E-002 51.6024
0.80000E-03 0.00000 54.5468
0.84000E-03 0.200000E-002 56.5699
0.88000E-03 0.400000E-002 57.9605
0.92000E-03 0.600000E-002 58.9095
0.96000E-03 0.800000E-002 59.5534
0.10000E-02 0.100000E-001 59.9887
*end
*create,PERZYNA-u-rate2p5.exp
/ninp,2
/nout,1
/1,TIME
/2,EPTO
/3,S
/khar,1
/rate,1
0.20000E-03 0.100000E-002 26.2947
0.40000E-03 0.200000E-002 41.4355
0.60000E-03 0.300000E-002 47.1644
0.80000E-03 0.400000E-002 49.4885
0.10000E-02 0.500000E-002 50.8147
0.12000E-02 0.600000E-002 51.8045
0.14000E-02 0.700000E-002 52.6073
0.16000E-02 0.800000E-002 53.2690
0.18000E-02 0.900000E-002 53.8154
0.20000E-02 0.100000E-001 54.2660
0.24000E-02 0.800000E-002 1.66602
0.28000E-02 0.600000E-002 -33.4810
0.32000E-02 0.400000E-002 -44.2798
0.36000E-02 0.200000E-002 -48.2898
0.40000E-02 0.00000 -50.8491
0.44000E-02 -0.200000E-002 -52.6098
0.48000E-02 -0.400000E-002 -53.8165
0.52000E-02 -0.600000E-002 -54.6380
0.56000E-02 -0.800000E-002 -55.1946
0.60000E-02 -0.100000E-001 -55.5703
0.64000E-02 -0.800000E-002 -2.97029
0.68000E-02 -0.600000E-002 32.2861
0.72000E-02 -0.400000E-002 43.4001
0.76000E-02 -0.200000E-002 47.6694
0.80000E-02 0.00000 50.4167
0.84000E-02 0.200000E-002 52.3119
0.88000E-02 0.400000E-002 53.6130
0.92000E-02 0.600000E-002 54.4998
0.96000E-02 0.800000E-002 55.1011
0.10000E-01 0.100000E-001 55.5072
*end
*create,PERZYNA-u-rate0p25.exp
/ninp,2
/nout,1
/1,TIME
/2,EPTO
/3,S
/khar,1
/rate,1
0.20000E-02 0.100000E-002 26.2522
0.40000E-02 0.200000E-002 39.1857
0.60000E-02 0.300000E-002 44.0695
0.80000E-02 0.400000E-002 46.1271
0.10000E-01 0.500000E-002 47.3748
0.12000E-01 0.600000E-002 48.3297
0.14000E-01 0.700000E-002 49.1087
0.16000E-01 0.800000E-002 49.7514
0.18000E-01 0.900000E-002 50.2821
0.20000E-01 0.100000E-001 50.7197
0.24000E-01 0.800000E-002 -1.88033
0.28000E-01 0.600000E-002 -32.5495
0.32000E-01 0.400000E-002 -41.4127
0.36000E-01 0.200000E-002 -45.0945
0.40000E-01 0.00000 -47.5227
0.44000E-01 -0.200000E-002 -49.1955
0.48000E-01 -0.400000E-002 -50.3409
0.52000E-01 -0.600000E-002 -51.1200
0.56000E-01 -0.800000E-002 -51.6475
0.60000E-01 -0.100000E-001 -52.0035
0.64000E-01 -0.800000E-002 0.596548
0.68000E-01 -0.600000E-002 31.4078
0.72000E-01 -0.400000E-002 40.5865
0.76000E-01 -0.200000E-002 44.5129
0.80000E-01 0.00000 47.1181
0.84000E-01 0.200000E-002 48.9171
0.88000E-01 0.400000E-002 50.1508
0.92000E-01 0.600000E-002 50.9910
0.96000E-01 0.800000E-002 51.5603
0.10000 0.100000E-001 51.9447
*end
*create,PERZYNA-u-rate0p025.exp
/ninp,2
/nout,1
/1,TIME
/2,EPTO
/3,S
/khar,1
/rate,1
0.20000E-01 0.100000E-002 26.0289
0.40000E-01 0.200000E-002 37.2562
0.60000E-01 0.300000E-002 41.5592
0.80000E-01 0.400000E-002 43.4422
0.10000 0.500000E-002 44.6371
0.12000 0.600000E-002 45.5666
0.14000 0.700000E-002 46.3275
0.16000 0.800000E-002 46.9555
0.18000 0.900000E-002 47.4739
0.20000 0.100000E-001 47.9014
0.24000 0.800000E-002 -4.69684
0.28000 0.600000E-002 -31.4696
0.32000 0.400000E-002 -39.0704
0.36000 0.200000E-002 -42.5401
0.40000 0.00000 -44.8707
0.44000 -0.200000E-002 -46.4767
0.48000 -0.400000E-002 -47.5754
0.52000 -0.600000E-002 -48.3222
0.56000 -0.800000E-002 -48.8277
0.60000 -0.100000E-001 -49.1687
0.64000 -0.800000E-002 3.42958
0.68000 -0.600000E-002 30.3732
0.72000 -0.400000E-002 38.2849
0.76000 -0.200000E-002 41.9878
0.80000 0.00000 44.4871
0.84000 0.200000E-002 46.2130
0.88000 0.400000E-002 47.3955
0.92000 0.600000E-002 48.2002
0.96000 0.800000E-002 48.7453
1.0000 0.100000E-001 49.1132
*end
*create,PERZYNA-u-slow.exp
/1,EPTO
/2,S
/khar,1
0.100000E-002 26.0289
0.200000E-002 37.2562
0.300000E-002 41.5592
0.400000E-002 43.4422
0.500000E-002 44.6371
0.600000E-002 45.5666
0.700000E-002 46.3275
0.800000E-002 46.9555
0.900000E-002 47.4739
0.100000E-001 47.9014
0.800000E-002 -4.69684
0.600000E-002 -31.4696
0.400000E-002 -39.0704
0.200000E-002 -42.5401
0.00000 -44.8707
-0.200000E-002 -46.4767
-0.400000E-002 -47.5754
-0.600000E-002 -48.3222
-0.800000E-002 -48.8277
-0.100000E-001 -49.1687
-0.800000E-002 3.42958
-0.600000E-002 30.3732
-0.400000E-002 38.2849
-0.200000E-002 41.9878
0.00000 44.4871
0.200000E-002 46.2130
0.400000E-002 47.3955
0.600000E-002 48.2002
0.800000E-002 48.7453
0.100000E-001 49.1132
*end
/prep7
Ce1=26300 ! Elastic Modulus
Ce2=0.3 ! Poisson's Ratio
TB,ELAS,1
TBDATA,1,Ce1,Ce2
C1 = 1.8800000e+01
C2 = 3.1506514e+03
C3 = 2.5739148e+02
C4 = 3.6519392e+06
C5 = 1.9894826e+05
tb,chab,1,,
tbdata,1,C1,1,1,2,2,
!******************* fit all the input data !!!!!!********************
Cp1=1
Cp2=100
TB,RATE,1,,,PERZYNA ! PERZYNA for rate hardening
TBDATA,1,Cp1,Cp2 !
tblis,all,all
! Add Experimental Data to be used only for kinematic hardening
tbft,eadd,1,unia,PERZYNA-u-slow.exp
! Adding the Perzyna curve-fitting data, 6 different rates, activated only when rate is
!enabled in the multistep solve
tbft,eadd,1,unia,PERZYNA-u-rate0p025.exp
tbft,eadd,1,unia,PERZYNA-u-rate0p25.exp
tbft,eadd,1,unia,PERZYNA-u-rate2p5.exp
tbft,eadd,1,unia,PERZYNA-u-rate25.exp
tbft,eadd,1,unia,PERZYNA-u-rate250.exp
tbft,eadd,1,unia,PERZYNA-u-rate2500.exp
! Constructing the fitting function
tbft,fadd,1,aml,genr,ratefit
! Start multistep plasticity-specific solve which will fit the chaboche parameters first and then
! the rate-dependent plasticity parameters. (Issues two tbft,solve commands internally.)
tbft,psolve,1, aml,genr,ratefit,1,50
tbft,list,1
tbft,fset,1, aml,genr,ratefit
!Save parameters to the database
tbft,fset,1, aml,genr,ratefit
tblis,all,all
Example: Parameter-Fitting of Anand Rate-Dependent Plasticity Model
! Example Problem for Anand Viscoplasticity Fitting at Different Rates
*create,unia-2.exp
/ninp,2
/nout,1
/1,time
/2,epto
/3,s
/temp,273
0.20000E-01 0.100000E-001 0.813999E+008
0.40000E-01 0.200000E-001 0.102931E+009
0.60000E-01 0.300000E-001 0.124107E+009
0.80000E-01 0.400000E-001 0.145065E+009
0.10000 0.500000E-001 0.165807E+009
0.12000 0.600000E-001 0.186337E+009
0.14000 0.700000E-001 0.206656E+009
0.16000 0.800000E-001 0.226768E+009
0.18000 0.900000E-001 0.246674E+009
0.20000 0.100000 0.266378E+009
0.22000 0.110000 0.285881E+009
0.24000 0.120000 0.305187E+009
0.26000 0.130000 0.324297E+009
0.28000 0.140000 0.343213E+009
0.30000 0.150000 0.361939E+009
0.32000 0.160000 0.380476E+009
0.34000 0.170000 0.398826E+009
0.36000 0.180000 0.416992E+009
0.38000 0.190000 0.434976E+009
0.40000 0.200000 0.452780E+009
0.42000 0.210000 0.470406E+009
0.44000 0.220000 0.487857E+009
0.46000 0.230000 0.505134E+009
0.48000 0.240000 0.522239E+009
0.50000 0.250000 0.539175E+009
0.52000 0.260000 0.555943E+009
0.54000 0.270000 0.572545E+009
0.56000 0.280000 0.588984E+009
0.58000 0.290000 0.605260E+009
0.60000 0.300000 0.621377E+009
0.62000 0.310000 0.637336E+009
0.64000 0.320000 0.653138E+009
0.66000 0.330000 0.668786E+009
0.68000 0.340000 0.684282E+009
0.70000 0.350000 0.699626E+009
0.72000 0.360000 0.714821E+009
0.74000 0.370000 0.729869E+009
0.76000 0.380000 0.744771E+009
0.78000 0.390000 0.759529E+009
0.80000 0.400000 0.774145E+009
0.82000 0.410000 0.788620E+009
0.84000 0.420000 0.802955E+009
0.86000 0.430000 0.817153E+009
0.88000 0.440000 0.831215E+009
0.90000 0.450000 0.845143E+009
0.92000 0.460000 0.858938E+009
0.94000 0.470000 0.872601E+009
0.96000 0.480000 0.886134E+009
0.98000 0.490000 0.899539E+009
1.0000 0.500000 0.912817E+009
1.0200 0.490000 0.306817E+009
1.0400 0.480000 -0.299183E+009
1.0600 0.470000 -0.871656E+009
1.0800 0.460000 -0.924658E+009
1.1000 0.450000 -0.938667E+009
1.1200 0.440000 -0.951600E+009
1.1400 0.430000 -0.964387E+009
1.1600 0.420000 -0.977054E+009
1.1800 0.410000 -0.989602E+009
1.2000 0.400000 -0.100203E+010
1.2200 0.390000 -0.101435E+010
1.2400 0.380000 -0.102655E+010
1.2600 0.370000 -0.103863E+010
1.2800 0.360000 -0.105061E+010
1.3000 0.350000 -0.106247E+010
1.3200 0.340000 -0.107422E+010
1.3400 0.330000 -0.108587E+010
1.3600 0.320000 -0.109740E+010
1.3800 0.310000 -0.110883E+010
1.4000 0.300000 -0.112016E+010
1.4200 0.290000 -0.113138E+010
1.4400 0.280000 -0.114250E+010
1.4600 0.270000 -0.115352E+010
1.4800 0.260000 -0.116444E+010
1.5000 0.250000 -0.117525E+010
1.5200 0.240000 -0.118597E+010
1.5400 0.230000 -0.119660E+010
1.5600 0.220000 -0.120712E+010
1.5800 0.210000 -0.121755E+010
1.6000 0.200000 -0.122789E+010
1.6200 0.190000 -0.123813E+010
1.6400 0.180000 -0.124828E+010
1.6600 0.170000 -0.125834E+010
1.6800 0.160000 -0.126831E+010
1.7000 0.150000 -0.127820E+010
1.7200 0.140000 -0.128799E+010
1.7400 0.130000 -0.129769E+010
1.7600 0.120000 -0.130731E+010
1.7800 0.110000 -0.131685E+010
1.8000 0.100000 -0.132630E+010
1.8200 0.900000E-001 -0.133566E+010
1.8400 0.800000E-001 -0.134495E+010
1.8600 0.700000E-001 -0.135415E+010
1.8800 0.600000E-001 -0.136327E+010
1.9000 0.500000E-001 -0.137231E+010
1.9200 0.400000E-001 -0.138127E+010
1.9400 0.300000E-001 -0.139015E+010
1.9600 0.200000E-001 -0.139896E+010
1.9800 0.100000E-001 -0.140769E+010
2.0000 0.00000 -0.141634E+010
*end
*create,unia-20.exp
/ninp,2
/nout,1
/1,time
/2,epto
/3,s
/temp,273
0.20000 0.100000E-001 0.783858E+008
0.40000 0.200000E-001 0.989733E+008
0.60000 0.300000E-001 0.119184E+009
0.80000 0.400000E-001 0.139150E+009
1.0000 0.500000E-001 0.158874E+009
1.2000 0.600000E-001 0.178361E+009
1.4000 0.700000E-001 0.197614E+009
1.6000 0.800000E-001 0.216637E+009
1.8000 0.900000E-001 0.235431E+009
2.0000 0.100000 0.254001E+009
2.2000 0.110000 0.272350E+009
2.4000 0.120000 0.290481E+009
2.6000 0.130000 0.308397E+009
2.8000 0.140000 0.326100E+009
3.0000 0.150000 0.343594E+009
3.2000 0.160000 0.360882E+009
3.4000 0.170000 0.377967E+009
3.6000 0.180000 0.394851E+009
3.8000 0.190000 0.411538E+009
4.0000 0.200000 0.428029E+009
4.2000 0.210000 0.444328E+009
4.4000 0.220000 0.460437E+009
4.6000 0.230000 0.476359E+009
4.8000 0.240000 0.492097E+009
5.0000 0.250000 0.507653E+009
5.2000 0.260000 0.523029E+009
5.4000 0.270000 0.538228E+009
5.6000 0.280000 0.553252E+009
5.8000 0.290000 0.568105E+009
6.0000 0.300000 0.582787E+009
6.2000 0.310000 0.597302E+009
6.4000 0.320000 0.611651E+009
6.6000 0.330000 0.625837E+009
6.8000 0.340000 0.639862E+009
7.0000 0.350000 0.653729E+009
7.2000 0.360000 0.667439E+009
7.4000 0.370000 0.680994E+009
7.6000 0.380000 0.694397E+009
7.8000 0.390000 0.707650E+009
8.0000 0.400000 0.720754E+009
8.2000 0.410000 0.733712E+009
8.4000 0.420000 0.746525E+009
8.6000 0.430000 0.759196E+009
8.8000 0.440000 0.771726E+009
9.0000 0.450000 0.784117E+009
9.2000 0.460000 0.796372E+009
9.4000 0.470000 0.808491E+009
9.6000 0.480000 0.820477E+009
9.8000 0.490000 0.832331E+009
10.000 0.500000 0.844055E+009
10.200 0.490000 0.238055E+009
10.400 0.480000 -0.367945E+009
10.600 0.470000 -0.827145E+009
10.800 0.460000 -0.857433E+009
11.000 0.450000 -0.869313E+009
11.200 0.440000 -0.880644E+009
11.400 0.430000 -0.891843E+009
11.600 0.420000 -0.902919E+009
11.800 0.410000 -0.913876E+009
12.000 0.400000 -0.924714E+009
12.200 0.390000 -0.935436E+009
12.400 0.380000 -0.946043E+009
12.600 0.370000 -0.956536E+009
12.800 0.360000 -0.966916E+009
13.000 0.350000 -0.977186E+009
13.200 0.340000 -0.987347E+009
13.400 0.330000 -0.997399E+009
13.600 0.320000 -0.100734E+010
13.800 0.310000 -0.101719E+010
14.000 0.300000 -0.102692E+010
14.200 0.290000 -0.103656E+010
14.400 0.280000 -0.104609E+010
14.600 0.270000 -0.105552E+010
14.800 0.260000 -0.106486E+010
15.000 0.250000 -0.107409E+010
15.200 0.240000 -0.108323E+010
15.400 0.230000 -0.109228E+010
15.600 0.220000 -0.110123E+010
15.800 0.210000 -0.111009E+010
16.000 0.200000 -0.111885E+010
16.200 0.190000 -0.112753E+010
16.400 0.180000 -0.113612E+010
16.600 0.170000 -0.114461E+010
16.800 0.160000 -0.115303E+010
17.000 0.150000 -0.116135E+010
17.200 0.140000 -0.116959E+010
17.400 0.130000 -0.117775E+010
17.600 0.120000 -0.118582E+010
17.800 0.110000 -0.119381E+010
18.000 0.100000 -0.120173E+010
18.200 0.900000E-001 -0.120956E+010
18.400 0.800000E-001 -0.121731E+010
18.600 0.700000E-001 -0.122498E+010
18.800 0.600000E-001 -0.123258E+010
19.000 0.500000E-001 -0.124010E+010
19.200 0.400000E-001 -0.124755E+010
19.400 0.300000E-001 -0.125492E+010
19.600 0.200000E-001 -0.126222E+010
19.800 0.100000E-001 -0.126944E+010
20.000 0.00000 -0.127660E+010
*end
*create,unia-200.exp
/ninp,2
/nout,1
/1,time
/2,epto
/3,s
/temp,273
2.0000 0.100000E-001 0.753507E+008
4.0000 0.200000E-001 0.949764E+008
6.0000 0.300000E-001 0.114201E+009
8.0000 0.400000E-001 0.133151E+009
10.000 0.500000E-001 0.151834E+009
12.000 0.600000E-001 0.170253E+009
14.000 0.700000E-001 0.188412E+009
16.000 0.800000E-001 0.206316E+009
18.000 0.900000E-001 0.223969E+009
20.000 0.100000 0.241375E+009
22.000 0.110000 0.258539E+009
24.000 0.120000 0.275464E+009
26.000 0.130000 0.292153E+009
28.000 0.140000 0.308612E+009
30.000 0.150000 0.324844E+009
32.000 0.160000 0.340852E+009
34.000 0.170000 0.356640E+009
36.000 0.180000 0.372212E+009
38.000 0.190000 0.387571E+009
40.000 0.200000 0.402721E+009
42.000 0.210000 0.417665E+009
44.000 0.220000 0.432406E+009
46.000 0.230000 0.446948E+009
48.000 0.240000 0.461293E+009
50.000 0.250000 0.475445E+009
52.000 0.260000 0.489408E+009
54.000 0.270000 0.503183E+009
56.000 0.280000 0.516774E+009
58.000 0.290000 0.530185E+009
60.000 0.300000 0.543417E+009
62.000 0.310000 0.556473E+009
64.000 0.320000 0.569358E+009
66.000 0.330000 0.582072E+009
68.000 0.340000 0.594619E+009
70.000 0.350000 0.607001E+009
72.000 0.360000 0.619221E+009
74.000 0.370000 0.631282E+009
76.000 0.380000 0.643186E+009
78.000 0.390000 0.654935E+009
80.000 0.400000 0.666531E+009
82.000 0.410000 0.677979E+009
84.000 0.420000 0.689278E+009
86.000 0.430000 0.700432E+009
88.000 0.440000 0.711443E+009
90.000 0.450000 0.722314E+009
92.000 0.460000 0.733046E+009
94.000 0.470000 0.743641E+009
96.000 0.480000 0.754101E+009
98.000 0.490000 0.764429E+009
100.00 0.500000 0.774627E+009
102.00 0.490000 0.168627E+009
104.00 0.480000 -0.437373E+009
106.00 0.470000 -0.768667E+009
108.00 0.460000 -0.788650E+009
110.00 0.450000 -0.798760E+009
112.00 0.440000 -0.808532E+009
114.00 0.430000 -0.818176E+009
116.00 0.420000 -0.827701E+009
118.00 0.410000 -0.837107E+009
120.00 0.400000 -0.846396E+009
122.00 0.390000 -0.855571E+009
124.00 0.380000 -0.864632E+009
126.00 0.370000 -0.873582E+009
128.00 0.360000 -0.882423E+009
130.00 0.350000 -0.891155E+009
132.00 0.340000 -0.899780E+009
134.00 0.330000 -0.908300E+009
136.00 0.320000 -0.916717E+009
138.00 0.310000 -0.925032E+009
140.00 0.300000 -0.933246E+009
142.00 0.290000 -0.941361E+009
144.00 0.280000 -0.949379E+009
146.00 0.270000 -0.957301E+009
148.00 0.260000 -0.965127E+009
150.00 0.250000 -0.972860E+009
152.00 0.240000 -0.980502E+009
154.00 0.230000 -0.988052E+009
156.00 0.220000 -0.995513E+009
158.00 0.210000 -0.100289E+010
160.00 0.200000 -0.101017E+010
162.00 0.190000 -0.101737E+010
164.00 0.180000 -0.102449E+010
166.00 0.170000 -0.103152E+010
168.00 0.160000 -0.103847E+010
170.00 0.150000 -0.104534E+010
172.00 0.140000 -0.105213E+010
174.00 0.130000 -0.105884E+010
176.00 0.120000 -0.106547E+010
178.00 0.110000 -0.107203E+010
180.00 0.100000 -0.107851E+010
182.00 0.900000E-001 -0.108492E+010
184.00 0.800000E-001 -0.109125E+010
186.00 0.700000E-001 -0.109751E+010
188.00 0.600000E-001 -0.110370E+010
190.00 0.500000E-001 -0.110982E+010
192.00 0.400000E-001 -0.111587E+010
194.00 0.300000E-001 -0.112185E+010
196.00 0.200000E-001 -0.112776E+010
198.00 0.100000E-001 -0.113361E+010
200.00 0.00000 -0.113939E+010
*end
*create,unia-2000.exp
/ninp,2
/nout,1
/1,time
/2,epto
/3,s
/temp,273
20.000 0.100000E-001 0.722935E+008
40.000 0.200000E-001 0.909380E+008
60.000 0.300000E-001 0.109155E+009
80.000 0.400000E-001 0.127067E+009
100.00 0.500000E-001 0.144683E+009
120.00 0.600000E-001 0.162006E+009
140.00 0.700000E-001 0.179045E+009
160.00 0.800000E-001 0.195802E+009
180.00 0.900000E-001 0.212285E+009
200.00 0.100000 0.228499E+009
220.00 0.110000 0.244448E+009
240.00 0.120000 0.260138E+009
260.00 0.130000 0.275574E+009
280.00 0.140000 0.290760E+009
300.00 0.150000 0.305702E+009
320.00 0.160000 0.320404E+009
340.00 0.170000 0.334871E+009
360.00 0.180000 0.349106E+009
380.00 0.190000 0.363115E+009
400.00 0.200000 0.376902E+009
420.00 0.210000 0.390471E+009
440.00 0.220000 0.403825E+009
460.00 0.230000 0.416970E+009
480.00 0.240000 0.429909E+009
500.00 0.250000 0.442645E+009
520.00 0.260000 0.455183E+009
540.00 0.270000 0.467527E+009
560.00 0.280000 0.479679E+009
580.00 0.290000 0.491643E+009
600.00 0.300000 0.503423E+009
620.00 0.310000 0.515023E+009
640.00 0.320000 0.526445E+009
660.00 0.330000 0.537693E+009
680.00 0.340000 0.548769E+009
700.00 0.350000 0.559678E+009
720.00 0.360000 0.570422E+009
740.00 0.370000 0.581004E+009
760.00 0.380000 0.591426E+009
780.00 0.390000 0.601693E+009
800.00 0.400000 0.611806E+009
820.00 0.410000 0.621769E+009
840.00 0.420000 0.631584E+009
860.00 0.430000 0.641253E+009
880.00 0.440000 0.650780E+009
900.00 0.450000 0.660166E+009
920.00 0.460000 0.669415E+009
940.00 0.470000 0.678528E+009
960.00 0.480000 0.687509E+009
980.00 0.490000 0.696359E+009
1000.0 0.500000 0.705081E+009
1020.0 0.490000 0.990806E+008
1040.0 0.480000 -0.506919E+009
1060.0 0.470000 -0.705886E+009
1080.0 0.460000 -0.719109E+009
1100.0 0.450000 -0.727599E+009
1120.0 0.440000 -0.735873E+009
1140.0 0.430000 -0.744027E+009
1160.0 0.420000 -0.752064E+009
1180.0 0.410000 -0.759987E+009
1200.0 0.400000 -0.767797E+009
1220.0 0.390000 -0.775498E+009
1240.0 0.380000 -0.783089E+009
1260.0 0.370000 -0.790574E+009
1280.0 0.360000 -0.797954E+009
1300.0 0.350000 -0.805231E+009
1320.0 0.340000 -0.812407E+009
1340.0 0.330000 -0.819483E+009
1360.0 0.320000 -0.826461E+009
1380.0 0.310000 -0.833343E+009
1400.0 0.300000 -0.840130E+009
1420.0 0.290000 -0.846824E+009
1440.0 0.280000 -0.853426E+009
1460.0 0.270000 -0.859938E+009
1480.0 0.260000 -0.866361E+009
1500.0 0.250000 -0.872697E+009
1520.0 0.240000 -0.878948E+009
1540.0 0.230000 -0.885114E+009
1560.0 0.220000 -0.891197E+009
1580.0 0.210000 -0.897199E+009
1600.0 0.200000 -0.903120E+009
1620.0 0.190000 -0.908962E+009
1640.0 0.180000 -0.914727E+009
1660.0 0.170000 -0.920415E+009
1680.0 0.160000 -0.926027E+009
1700.0 0.150000 -0.931566E+009
1720.0 0.140000 -0.937032E+009
1740.0 0.130000 -0.942426E+009
1760.0 0.120000 -0.947750E+009
1780.0 0.110000 -0.953004E+009
1800.0 0.100000 -0.958190E+009
1820.0 0.900000E-001 -0.963309E+009
1840.0 0.800000E-001 -0.968361E+009
1860.0 0.700000E-001 -0.973348E+009
1880.0 0.600000E-001 -0.978271E+009
1900.0 0.500000E-001 -0.983131E+009
1920.0 0.400000E-001 -0.987929E+009
1940.0 0.300000E-001 -0.992666E+009
1960.0 0.200000E-001 -0.997342E+009
1980.0 0.100000E-001 -0.100196E+010
2000.0 0.00000 -0.100652E+010
*end
/prep7
tb,elas,1
tbdat,,60.6e9,0.3
tb,rate,1,,,anand
tbdat,1,1e9
tbdat,2,1
tbdat,3,1
tbdat,4,1
tbdat,5,1
tbdat,6,1e9
tbdat,7,1e9
tbdat,8,1
tbdat,9,1.1
tbft,fadd,1,aml,genr,anandex
tbft,eadd,1,unia,unia-2.exp
tbft,eadd,1,unia,unia-20.exp
tbft,eadd,1,unia,unia-200.exp
tbft,eadd,1,unia,unia-2000.exp
tbft,set,1,aml,genr,anandex,tref,273
tbft,solve,1,aml,genr,anandex,1,50
tbft,fset,1,aml,genr,anandex
/com,
/com, Material Parameters
/com,
tblis,all,all
fini
/exit
Example: Parameter-Fitting of a Plasticity Model Implemented via UserMat
subroutine usermat(
& matId, elemId,kDomIntPt, kLayer, kSectPt,
& ldstep,isubst,keycut,
& nDirect,nShear,ncomp,nStatev,nProp,
& Time,dTime,Temp,dTemp,
& stress,ustatev,dsdePl,sedEl,sedPl,epseq,
& Strain,dStrain, epsPl, prop, coords,
& var0, defGrad_t, defGrad,
& tsstif, epsZZ, cutFactor,
& var1, var2, var3, var4, var5,
& var6, var7)
c*************************************************************************
c *** primary function ***
c
c user defined material constitutive model
c
c Attention:
c User must define material constitutive law properly
c according to the stress state such as 3D, plane strain
c and axisymmetry, plane stress and beam.
c
c a 3D material constitutive model can use for
c plane strain and axisymmetry cases.
c
c When using shell elements, a plane stress algorithm
c must be use.
c
c gal July, 1999
c
c The following demonstrates a USERMAT subroutine for
c a plasticity model of 3D solid elements or plane elements
c in plane strain or axisymmetric stress state. The plasticity
c model is the same as TB, BISO.
c See "ANSYS user material subroutine USERMAT" for detailed
c description of how to write a USERMAT routine.
c
c*************************************************************************
c
c input arguments
c ===============
c matId (int,sc,i) material #
c elemId (int,sc,i) element #
c kDomIntPt (int,sc,i) "k"th domain integration point
c kLayer (int,sc,i) "k"th layer
c kSectPt (int,sc,i) "k"th Section point
c ldstep (int,sc,i) load step number
c isubst (int,sc,i) substep number
c nDirect (int,sc,in) # of direct components
c nShear (int,sc,in) # of shear components
c ncomp (int,sc,in) nDirect + nShear
c nstatev (int,sc,l) Number of state variables
c nProp (int,sc,l) Number of material ocnstants
c
c Temp (dp,sc,in) temperature at beginning of
c time increment
c dTemp (dp,sc,in) temperature increment
c Time (dp,sc,in) time at beginning of increment (t)
c dTime (dp,sc,in) current time increment (dt)
c
c Strain (dp,ar(ncomp),i) Strain at beginning of time increment
c dStrain (dp,ar(ncomp),i) Strain increment
c prop (dp,ar(nprop),i) Material constants defined by TB,USER
c coords (dp,ar(3),i) current coordinates
c defGrad_t(dp,ar(3,3),i) Deformation gradient at time t
c defGrad (dp,ar(3,3),i) Deformation gradient at time t+dt
c
c input output arguments
c ======================
c stress (dp,ar(nTesn),io) stress
c ustatev (dp,ar(nstatev),io) user state variable
c ustatev(1) - equivalent plastic strain
c ustatev(2) - statev(1+ncomp) - plastic strain vector
c ustatev(nStatev) - von-Mises stress
c sedEl (dp,sc,io) elastic work
c sedPl (dp,sc,io) plastic work
c epseq (dp,sc,io) equivalent plastic strain
c tsstif (dp,ar(2),io) transverse shear stiffness
c tsstif(1) - Gxz
c tsstif(2) - Gyz
c tsstif(1) is also used to calculate hourglass
c stiffness, this value must be defined when low
c order element, such as 181, 182, 185 with uniform
c integration is used.
c var? (dp,sc,io) not used, they are reserved arguments
c for further development
c
c output arguments
c ================
c keycut (int,sc,io) loading bisect/cut control
c 0 - no bisect/cut
c 1 - bisect/cut
c (factor will be determined by ANSYS solution control)
c dsdePl (dp,ar(ncomp,ncomp),io) material jacobian matrix
c epsZZ (dp,sc,o) strain epsZZ for plane stress,
c define it when accounting for thickness change
c in shell and plane stress states
c cutFactor(dp,sc,o) time step size cut-back factor
c define it if a smaller step size is wished
c recommended value is 0~1
c
c*************************************************************************
c
c ncomp 6 for 3D (nshear=3)
c ncomp 4 for plane strain or axisymmetric (nShear = 1)
c ncomp 3 for plane stress (nShear = 1)
c ncomp 3 for 3d beam (nShear = 2)
c ncomp 1 for 1D (nShear = 0)
c
c stresss and strains, plastic strain vectors
c 11, 22, 33, 12, 23, 13 for 3D
c 11, 22, 33, 12 for plane strain or axisymmetry
c 11, 22, 12 for plane stress
c 11, 13, 12 for 3d beam
c 11 for 1D
c
c material jacobian matrix
c 3D
c dsdePl | 1111 1122 1133 1112 1123 1113 |
c dsdePl | 2211 2222 2233 2212 2223 2213 |
c dsdePl | 3311 3322 3333 3312 3323 3313 |
c dsdePl | 1211 1222 1233 1212 1223 1213 |
c dsdePl | 2311 2322 2333 2312 2323 2313 |
c dsdePl | 1311 1322 1333 1312 1323 1313 |
c plane strain or axisymmetric (11, 22, 33, 12)
c dsdePl | 1111 1122 1133 1112 |
c dsdePl | 2211 2222 2233 2212 |
c dsdePl | 3311 3322 3333 3312 |
c dsdePl | 1211 1222 1233 1212 |
c plane stress (11, 22, 12)
c dsdePl | 1111 1122 1112 |
c dsdePl | 2211 2222 2212 |
c dsdePl | 1211 1222 1212 |
c 3d beam (11, 13, 12)
c dsdePl | 1111 1113 1112 |
c dsdePl | 1311 1313 1312 |
c dsdePl | 1211 1213 1212 |
c 1d
c dsdePl | 1111 |
c
c*************************************************************************
#include "impcom.inc"
c
INTEGER
& matId, elemId,
& kDomIntPt, kLayer, kSectPt,
& ldstep,isubst,keycut,
& nDirect,nShear,ncomp,nStatev,nProp
DOUBLE PRECISION
& Time, dTime, Temp, dTemp,
& sedEl, sedPl, epseq, epsZZ, cutFactor
DOUBLE PRECISION
& stress (ncomp ), ustatev (nStatev),
& dsdePl (ncomp,ncomp),
& Strain (ncomp ), dStrain (ncomp ),
& epsPl (ncomp ), prop (nProp ),
& coords (3),
& defGrad (3,3), defGrad_t(3,3),
& tsstif (2)
c
c***************** User defined part *************************************
c
c --- parameters
c
INTEGER mcomp
DOUBLE PRECISION HALF, THIRD, ONE, TWO, SMALL, ONEHALF,
& ZERO, TWOTHIRD, ONEDM02, ONEDM05, sqTiny
PARAMETER (ZERO = 0.d0,
& HALF = 0.5d0,
& THIRD = 1.d0/3.d0,
& ONE = 1.d0,
& TWO = 2.d0,
& SMALL = 1.d-08,
& sqTiny = 1.d-20,
& ONEDM02 = 1.d-02,
& ONEDM05 = 1.d-05,
& ONEHALF = 1.5d0,
& TWOTHIRD = 2.0d0/3.0d0,
& mcomp = 6
& )
c
c --- local variables
c
c sigElp (dp,ar(6 ),l) trial stress
c dsdeEl (dp,ar(6,6),l) elastic moduli
c sigDev (dp,ar(6 ),l) deviatoric stress tensor
c dfds (dp,ar(6 ),l) derivative of the yield function
c JM (dp,ar(6,6),l) 2D matrix for a 4 order tensor
c pEl (dp,sc ,l) hydrostatic pressure stress
c qEl (dp,sc ,l) von-mises stress
c pleq_t (dp,sc ,l) equivalent plastic strain at beginnig of time increment
c pleq (dp,sc ,l) equivalent plastic strain at end of time increment
c dpleq (dp,sc ,l) incremental equivalent plastic strain
c sigy_t (dp,sc ,l) yield stress at beginnig of time increments
c sigy (dp,sc ,l) yield stress at end of time increment
c young (dp,sc ,l) Young's modulus
c posn (dp,sc ,l) Poiss's ratio
c sigy0 (dp,sc ,l) initial yield stress
c dsigdep (dp,sc ,l) plastic slop
c twoG (dp,sc ,l) two time of shear moduli
c threeG (dp,sc ,l) three time of shear moduli
c
c --- temperary variables for solution purpose
c i, j
c threeOv2qEl, oneOv3G, qElOv3G, con1, con2, fratio
c
EXTERNAL vzero, vmove, get_ElmData, get_ElmInfo
DOUBLE PRECISION sigElp(mcomp), dsdeEl(mcomp,mcomp), G(mcomp),
& sigDev(mcomp), JM (mcomp,mcomp), dfds(mcomp),
& sigi (mcomp), strainEl(mcomp)
DOUBLE PRECISION var0, var1, var2, var3, var4, var5,
& var6, var7
DATA G/1.0D0,1.0D0,1.0D0,0.0D0,0.0D0,0.0D0/
c
INTEGER i, j, ncompgt
DOUBLE PRECISION pEl, qEl, pleq_t, sigy_t , sigy,
& dpleq, pleq,
& young, posn, sigy0, dsigdep,
& elast1,elast2,
& twoG, threeG, oneOv3G, qElOv3G, threeOv2qEl,
& fratio, con1, con2, dperr(3)
c*************************************************************************
c
keycut = 0
cutFactor = 0.d0
dsigdep = ZERO
pleq_t = ustatev(1)
pleq = pleq_t
c *** get Young's modulus and Poisson's ratio, initial yield stress and others
young = prop(1)
posn = prop(2)
sigy0 = prop(3)
c *** plastic strain tensor
call vmove(ustatev(2), epsPl(1), ncomp)
c *** calculate plastic slope
dsigdep = young*prop(4)/(young-prop(4))
twoG = young / (ONE+posn)
threeG = ONEHALF * twoG
elast1=young*posn/((1.0D0+posn)*(1.0D0-TWO*posn))
elast2=HALF*twoG
c *** define tsstif(1) since it is used for calculation of hourglass stiffness
tsstif(1) = elast2
c
c *** calculate elastic stiffness matrix (3d)
c
dsdeEl(1,1)=(elast1+TWO*elast2)*G(1)*G(1)
dsdeEl(1,2)=elast1*G(1)*G(2)+elast2*TWO*G(4)*G(4)
dsdeEl(1,3)=elast1*G(1)*G(3)+elast2*TWO*G(5)*G(5)
dsdeEl(1,4)=elast1*G(1)*G(4)+elast2*TWO*G(1)*G(4)
dsdeEl(1,5)=elast1*G(1)*G(5)+elast2*TWO*G(1)*G(5)
dsdeEl(1,6)=elast1*G(1)*G(6)+elast2*TWO*G(4)*G(5)
dsdeEl(2,2)=(elast1+TWO*elast2)*G(2)*G(2)
dsdeEl(2,3)=elast1*G(2)*G(3)+elast2*TWO*G(6)*G(6)
dsdeEl(2,4)=elast1*G(2)*G(4)+elast2*TWO*G(1)*G(4)
dsdeEl(2,5)=elast1*G(2)*G(5)+elast2*TWO*G(1)*G(5)
dsdeEl(2,6)=elast1*G(2)*G(6)+elast2*TWO*G(2)*G(6)
dsdeEl(3,3)=(elast1+TWO*elast2)*G(3)*G(3)
dsdeEl(3,4)=elast1*G(3)*G(4)+elast2*TWO*G(5)*G(6)
dsdeEl(3,5)=elast1*G(3)*G(5)+elast2*TWO*G(5)*G(3)
dsdeEl(3,6)=elast1*G(3)*G(6)+elast2*TWO*G(6)*G(3)
dsdeEl(4,4)=elast1*G(4)*G(4)+elast2*(G(1)*G(2)+G(4)*G(4))
dsdeEl(4,5)=elast1*G(4)*G(5)+elast2*(G(1)*G(6)+G(5)*G(4))
dsdeEl(4,6)=elast1*G(4)*G(6)+elast2*(G(4)*G(6)+G(5)*G(2))
dsdeEl(5,5)=elast1*G(5)*G(5)+elast2*(G(1)*G(3)+G(5)*G(5))
dsdeEl(5,6)=elast1*G(5)*G(6)+elast2*(G(4)*G(3)+G(5)*G(6))
dsdeEl(6,6)=elast1*G(6)*G(6)+elast2*(G(2)*G(3)+G(6)*G(6))
do i=1,ncomp-1
do j=i+1,ncomp
dsdeEl(j,i)=dsdeEl(i,j)
end do
end do
c
c
c *** get initial stress
call vzero(sigi(1),mcomp)
c
c *** calculate the trial stress and
c copy elastic moduli dsdeEl to material Jacobian matrix
do i=1,ncomp
strainEl(i) = Strain(i) + dStrain(i) - epsPl(i)
end do
call vzero(sigElp, 6)
do i=1,ncomp
do j=1,ncomp
dsdePl(j,i) = dsdeEl(j,i)
sigElp(i) = sigElp(i)+dsdeEl(j,i)*strainEl(j)
end do
sigElp(i) = sigElp(i) + sigi(i)
end do
c *** hydrostatic pressure stress
pEl = -THIRD * (sigElp(1) + sigElp(2) + sigElp(3))
c *** compute the deviatoric stress tensor
sigDev(1) = sigElp(1) + pEl
sigDev(2) = sigElp(2) + pEl
sigDev(3) = sigElp(3) + pEl
sigDev(4) = sigElp(4)
sigDev(5) = sigElp(5)
sigDev(6) = sigElp(6)
c *** compute von-mises stress
qEl =
& sigDev(1) * sigDev(1)+sigDev(2) * sigDev(2)+
& sigDev(3) * sigDev(3)+
& TWO*(sigDev(4) * sigDev(4)+ sigDev(5) * sigDev(5)+
& sigDev(6) * sigDev(6))
qEl = sqrt( ONEHALF * qEl)
c *** compute current yield stress
sigy = sigy0 + dsigdep * pleq
c
fratio = qEl / sigy - ONE
c *** check for yielding
IF (sigy .LE. ZERO.or.fratio .LE. -SMALL) GO TO 500
c
sigy_t = sigy
threeOv2qEl = ONEHALF / qEl
c *** compute derivative of the yield function
DO i=1, ncomp
dfds(i) = threeOv2qEl * sigDev(i)
END DO
oneOv3G = ONE / (threeG + dsigdep)
qElOv3G = qEl * oneOv3G
c *** initial guess of incremental equivalent plastic strain
dpleq = qElOv3G - sigy * oneOv3G
pleq = pleq_t + dpleq
sigy = sigy0 + dsigdep * pleq
c
c *** update stresses
DO i = 1 , ncomp
stress(i) = sigElp(i) - TWOTHIRD * (qEl-sigy) * dfds(i)
END DO
c
c *** update plastic strains
DO i = 1 , nDirect
epsPl(i) = epsPl(i) + dfds(i) * dpleq
END DO
DO i = nDirect + 1 , ncomp
epsPl(i) = epsPl(i) + TWO * dfds(i) * dpleq
END DO
epseq = pleq
c *** Update state variables
ustatev(1) = pleq
do i=1,ncomp
ustatev(i+1) = epsPl(i)
end do
c *** Update plastic work
sedPl = sedPl + HALF * (sigy_t+sigy)*dpleq
c
c *** Material Jcobian matrix
c
IF (qEl.LT.sqTiny) THEN
con1 = ZERO
ELSE
con1 = threeG * dpleq / qEl
END IF
con2 = threeG/(threeG+dsigdep) - con1
con2 = TWOTHIRD * con2
DO i=1,ncomp
DO j=1,ncomp
JM(j,i) = ZERO
END DO
END DO
DO i=1,nDirect
DO j=1,nDirect
JM(i,j) = -THIRD
END DO
JM(i,i) = JM(i,i) + ONE
END DO
DO i=nDirect + 1,ncomp
JM(i,i) = HALF
END DO
DO i=1,ncomp
DO j=1,ncomp
dsdePl(i,j) = dsdeEl(i,j) - twoG
& * ( con2 * dfds(i) * dfds(j) + con1 * JM(i,j) )
END DO
END DO
c
goto 600
500 continue
c *** Update stress in case of elastic/unloading
do i=1,ncomp
stress(i) = sigElp(i)
end do
600 continue
sedEl = ZERO
DO i = 1 , ncomp
sedEl = sedEl + stress(i)*(Strain(i)+dStrain(i)-epsPl(i))
END DO
sedEl = sedEl * HALF
ustatev(nStatev) = sigy
c
! cutFactor = 0.5d0
return
end
c ================================================================
c Start of Mechanical APDL command script
c ================================================================
/upf,usermat.F
/prep7
tb,user,1,2,5
tbdata,1,20e5, 0.3, 1e4,1,1 ! E, posn, sigy, H, printout flag
tb,state,1,,8
tbdata,8,0
tblis,all,all,
! Define Material
tbft,fadd,1,aml,genr,umatexample
! Define Uniaxial Data
tbft,eadd,1,unia,unia.exp
tbft,list,1
tbft,fix,1,aml,genr,umatexample,1,1
tbft,fix,1,aml,genr,umatexample,2,1
tbft,fix,1,aml,genr,umatexample,3,1
tbft,fix,1,aml,genr,umatexample,5,1
! Activate parameter-scaling for optimizing parameters that can
! vary a lot. This improves convergence.
tbft,psca,1,aml,genr,umatexample,4,expo
! Set the hardening coeff to 1 and see it get optimized
tbft,set,1,aml,genr,umatexample,4,1
tbft,solve,1,aml,genr,umatexample,1,50
tbft,fset,1,aml,genr,umatexample
tblis,all,allThe following example analyses are available for geomechanical curve-fitting:
Example: Parameter-Fitting of Yield Surfaces
This example uses the extended Drucker-Prager material model (TB,EDP).
*create,ysurf.exp /ninp,1 /nout,1 /1,pres /2,seqv -0.30000E+01 0 -0.25000E+01 0 -0.20000E+01 0 -0.15000E+01 0.18097E+01 -0.10000E+01 0.41343E+01 -0.50000E+00 0.61008E+01 0.00000E+00 0.78900E+01 0.50000E+00 0.95639E+01 0.10000E+01 0.11154E+02 0.15000E+01 0.12678E+02 0.20000E+01 0.14149E+02 0.25000E+01 0.15575E+02 0.30000E+01 0.16964E+02 0.35000E+01 0.18319E+02 0.40000E+01 0.19644E+02 0.45000E+01 0.20943E+02 0.50000E+01 0.22219E+02 0.55000E+01 0.23472E+02 0.60000E+01 0.24706E+02 0.65000E+01 0.25922E+02 0.70000E+01 0.27121E+02 0.75000E+01 0.28304E+02 0.80000E+01 0.29473E+02 0.85000E+01 0.30627E+02 0.90000E+01 0.31769E+02 0.95000E+01 0.32899E+02 0.10000E+02 0.34017E+02 0.10500E+02 0.35124E+02 0.11000E+02 0.36221E+02 0.11500E+02 0.37308E+02 0.12000E+02 0.38386E+02 0.12500E+02 0.39454E+02 0.13000E+02 0.40514E+02 0.13500E+02 0.41566E+02 0.14000E+02 0.42610E+02 0.14500E+02 0.43646E+02 0.15000E+02 0.44674E+02 0.15500E+02 0.45696E+02 0.16000E+02 0.46712E+02 0.16500E+02 0.47720E+02 0.17000E+02 0.48721E+02 0.17500E+02 0.49718E+02 0.18000E+02 0.50708E+02 0.18500E+02 0.51691E+02 0.19000E+02 0.52671E+02 0.19500E+02 0.53643E+02 0.20000E+02 0.54611E+02 0.20500E+02 0.55574E+02 0.21000E+02 0.56532E+02 0.21500E+02 0.57485E+02 0.22000E+02 0.58433E+02 0.22500E+02 0.59377E+02 0.23000E+02 0.60316E+02 0.23500E+02 0.61250E+02 0.24000E+02 0.62181E+02 0.24500E+02 0.63107E+02 0.25000E+02 0.64030E+02 0.25500E+02 0.64948E+02 0.26000E+02 0.65863E+02 0.26500E+02 0.66773E+02 0.27000E+02 0.67680E+02 0.27500E+02 0.68584E+02 0.28000E+02 0.69483E+02 0.28500E+02 0.70380E+02 0.29000E+02 0.71273E+02 0.29500E+02 0.72162E+02 0.30000E+02 0.73048E+02 0.30500E+02 0.73931E+02 0.31000E+02 0.74811E+02 0.31500E+02 0.75688E+02 0.32000E+02 0.76562E+02 0.32500E+02 0.77433E+02 0.33000E+02 0.78300E+02 0.33500E+02 0.79165E+02 0.34000E+02 0.80027E+02 0.34500E+02 0.80887E+02 0.35000E+02 0.81744E+02 0.35500E+02 0.82598E+02 0.36000E+02 0.83449E+02 0.36500E+02 0.84297E+02 0.37000E+02 0.85143E+02 0.37500E+02 0.85987E+02 0.38000E+02 0.86829E+02 0.38500E+02 0.87667E+02 0.39000E+02 0.88503E+02 0.39500E+02 0.89337E+02 0.40000E+02 0.90169E+02 *end /prep7 /prep7 ! Define linear elasticity constants tb,elas,1 tbdata,,2.1e4,0.45 ainv=1 b=1 ys=7.89 tb,edp,1,,,PYFUN tbdata,1,ainv,b,ys ! Add Experimental Data tbft,eadd,1,ysur,ysurf.exp ! Import or Create the Model tbft,fadd,1,aml,genr,edpmodel ! Solve tbft,solve,1,aml,genr,edpmodel,1,30 ! Write to TB Table Storage tbft,fset,1,aml,genr,edpmodel /out /gopr tbft,list,1 /exit
Example: Parameter-Fitting of Flow Potentials
This example with the extended Drucker-Prager material model (TB,EDP) fits flow-potential parameters using triaxial test data and previously fitted yield-surface parameters.
*create,triaxial-0.6.exp /ninp,2 /nout,2 /1,epto /2,elat /3,s /4,slat -0.250000E-003 0.601429E-004 -5.61000 -0.600000 -0.500000E-003 0.135143E-003 -10.8600 -0.600000 -0.875000E-003 0.247643E-003 -18.7350 -0.600000 -0.143750E-002 0.607905E-003 -19.0033 -0.655546 -0.173281E-002 0.803442E-003 -18.8461 -0.607792 -0.202812E-002 0.996463E-003 -18.8108 -0.597087 -0.247109E-002 0.128480E-002 -18.8138 -0.598001 -0.313555E-002 0.171725E-002 -18.8200 -0.599858 -0.348438E-002 0.194433E-002 -18.8207 -0.600070 -0.383322E-002 0.217144E-002 -18.8205 -0.600025 -0.435648E-002 0.251209E-002 -18.8204 -0.599989 -0.500001E-002 0.293105E-002 -18.8203 -0.599957 *end *create,triaxial-0.8.exp /ninp,2 /nout,2 /1,epto /2,elat /3,s /4,slat -0.250000E-003 0.551905E-004 -5.73000 -0.800000 -0.500000E-003 0.130190E-003 -10.9800 -0.800000 -0.875000E-003 0.242690E-003 -18.8550 -0.800000 -0.143750E-002 0.592747E-003 -19.6248 -0.846103 -0.173281E-002 0.786120E-003 -19.5122 -0.811387 -0.202813E-002 0.978081E-003 -19.4700 -0.798410 -0.247109E-002 0.126473E-002 -19.4684 -0.797899 -0.313555E-002 0.169451E-002 -19.4738 -0.799565 -0.348438E-002 0.192017E-002 -19.4753 -0.800032 -0.383322E-002 0.214586E-002 -19.4753 -0.800041 -0.435648E-002 0.248441E-002 -19.4752 -0.800003 -0.500000E-002 0.290076E-002 -19.4752 -0.799994 *end *create,triaxial-1.0.exp /ninp,2 /nout,2 /1,epto /2,elat /3,s /4,slat -0.250000E-003 0.502381E-004 -5.85000 -1.00000 -0.500000E-003 0.125238E-003 -11.1000 -1.00000 -0.875000E-003 0.237738E-003 -18.9750 -1.00000 -0.143750E-002 0.577929E-003 -20.2424 -1.03809 -0.173281E-002 0.769365E-003 -20.1681 -1.01487 -0.202812E-002 0.960357E-003 -20.1189 -0.999513 -0.247109E-002 0.124543E-002 -20.1133 -0.997765 -0.313555E-002 0.167273E-002 -20.1183 -0.999325 -0.348438E-002 0.189707E-002 -20.1205 -1.00001 -0.383322E-002 0.212145E-002 -20.1207 -1.00005 -0.435648E-002 0.245803E-002 -20.1205 -1.00001 -0.500000E-002 0.287196E-002 -20.1205 -0.999993 *end *create,triaxial-1.2.exp /ninp,2 /nout,2 /1,epto /2,elat /3,s /4,slat -0.250000E-003 0.452857E-004 -5.97000 -1.20000 -0.500000E-003 0.120286E-003 -11.2200 -1.20000 -0.875000E-003 0.232786E-003 -19.0950 -1.20000 -0.143750E-002 0.563429E-003 -20.8558 -1.23131 -0.173281E-002 0.753125E-003 -20.8146 -1.21825 -0.202813E-002 0.943225E-003 -20.7583 -1.20043 -0.247109E-002 0.122681E-002 -20.7494 -1.19761 -0.313555E-002 0.165180E-002 -20.7542 -1.19913 -0.348438E-002 0.187491E-002 -20.7569 -1.19999 -0.383322E-002 0.209807E-002 -20.7572 -1.20006 -0.435648E-002 0.243282E-002 -20.7570 -1.20002 -0.500000E-002 0.284451E-002 -20.7570 -1.19999 *end *create,triaxial-1.4.exp /ninp,2 /nout,2 /1,epto /2,elat /3,s /4,slat -0.250000E-003 0.403333E-004 -6.09000 -1.40000 -0.500000E-003 0.115333E-003 -11.3400 -1.40000 -0.875000E-003 0.227833E-003 -19.2150 -1.40000 -0.143750E-002 0.549226E-003 -21.4651 -1.42560 -0.173281E-002 0.737352E-003 -21.4523 -1.42150 -0.202812E-002 0.926628E-003 -21.3889 -1.40119 -0.247109E-002 0.120883E-002 -21.3773 -1.39746 -0.313555E-002 0.163165E-002 -21.3820 -1.39898 -0.348438E-002 0.185361E-002 -21.3851 -1.39998 -0.383322E-002 0.207563E-002 -21.3854 -1.40007 -0.435648E-002 0.240867E-002 -21.3853 -1.40002 -0.500000E-002 0.281825E-002 -21.3852 -1.39999 *end /prep7 tb,elas,1 tbdata,,2.1e4,0.3 E=2.1e4 mu=0.3 a=0.12 ainv=1/a b=1.5 ys=7.89 tb,edp,1,,,PYFUN tbdata,1,ainv,b,ys ! yield surface parameters are a reasonable initial guess for ! flow potential parameters tb,edp,1,,,PFPOT tbdata,1,ainv,b tbft,fadd,1,aml,genr,testprob tbft,eadd,1,tria,triaxial-0.6.exp tbft,eadd,1,tria,triaxial-0.8.exp tbft,eadd,1,tria,triaxial-1.0.exp tbft,eadd,1,tria,triaxial-1.2.exp tbft,eadd,1,tria,triaxial-1.4.exp ! Fixing all non flow potential parameters tbft,fix,1,aml,genr,testprob,1,1 tbft,fix,1,aml,genr,testprob,2,1 tbft,list,1 tbft,solve,1,aml,genr,testprob,1,100 tbft,fset,1,aml,genr,testprob /out /gopr tblis,all,all fini /exit
Example: Parameter-Fitting of the EDP Cap Model
This example with the extended Drucker-Prager cap material model (TB,EDP,,,CYFUN) fits the EDP Cap model with sqj2 (square root of J2) vs. i1 experimental data.
/title Curve-Fitting EDP Cap Model's yield surface *create,ysurf.exp /ninp,1 /nout,1 /1,i1 /2,sqj2 /ztol,1e-5 -1.35E+01 3.49E-10 -1.20E+01 3.49E-10 -1.05E+01 3.49E-10 -9.00E+00 2.37E+00 -7.50E+00 4.35E+00 -6.00E+00 5.26E+00 -4.50E+00 6.09E+00 -3.00E+00 6.44E+00 -1.50E+00 6.89E+00 0.00E+00 6.95E+00 1.50E+00 7.06E+00 3.00E+00 7.09E+00 4.50E+00 7.06E+00 6.00E+00 7.04E+00 7.50E+00 7.18E+00 9.00E+00 7.17E+00 1.05E+01 7.45E+00 1.20E+01 7.41E+00 1.35E+01 7.41E+00 1.50E+01 7.65E+00 1.65E+01 7.61E+00 1.80E+01 7.52E+00 1.95E+01 7.86E+00 2.10E+01 7.79E+00 2.25E+01 7.79E+00 2.40E+01 7.90E+00 2.55E+01 7.88E+00 2.70E+01 8.20E+00 2.85E+01 8.03E+00 3.00E+01 8.13E+00 3.15E+01 8.22E+00 3.30E+01 8.25E+00 3.45E+01 8.28E+00 3.60E+01 8.53E+00 3.75E+01 8.55E+00 3.90E+01 8.65E+00 4.05E+01 8.50E+00 4.20E+01 8.84E+00 4.35E+01 8.62E+00 4.50E+01 8.98E+00 4.65E+01 8.97E+00 4.80E+01 9.13E+00 4.95E+01 8.89E+00 5.10E+01 9.16E+00 5.25E+01 9.23E+00 5.40E+01 9.13E+00 5.55E+01 9.39E+00 5.70E+01 9.54E+00 5.85E+01 9.32E+00 6.00E+01 9.50E+00 6.15E+01 9.52E+00 6.30E+01 9.80E+00 6.45E+01 9.77E+00 6.60E+01 9.61E+00 6.75E+01 9.67E+00 6.90E+01 9.86E+00 7.05E+01 9.68E+00 7.20E+01 9.65E+00 7.35E+01 9.14E+00 7.50E+01 8.46E+00 7.65E+01 7.30E+00 7.80E+01 5.76E+00 7.95E+01 3.06E+00 8.10E+01 3.49E-10 8.25E+01 3.46E-10 8.40E+01 3.52E-10 8.55E+01 3.49E-10 8.70E+01 3.50E-10 8.85E+01 3.49E-10 *end /prep7 /prep7 ! Define linear elasticity constants tb,elas,1 tbdat,,1.2e3,0.0 ! Cap yield function tb,edp ,1,1,,cyfun tbdata,1,1 ! Rc tbdata,2,1 ! Rt tbdata,3,-80 ! Xi tbdata,4,10 ! SIGMA tbdata,5,1 ! B tbdata,6,1 ! A tbdata,7,1 ! ALPHA tbdata,8,1 ! PSI ! Define hardening for cap-compaction portion tbdata,9,0.45 ! W1c tbdata,10,0 ! D1c tbdata,11,0.0 ! D2c tbft,fadd,1,aml,genr,edpmodel tbft,eadd,1,j2i1,ysurf.exp TBFPLOT,1,'amgenredpmodel',1,1,2,3 ! Fix Xi and Sigma from the experimental data tbft,fix,1,aml,genr,edpmodel,3,1 tbft,fix,1,aml,genr,edpmodel,4,1 tbft,fix,1,aml,genr,edpmodel,9,1 tbft,fix,1,aml,genr,edpmodel,10,1 tbft,fix,1,aml,genr,edpmodel,11,1 tbft,fix,1,aml,genr,edpmodel,12,1 tbft,fix,1,aml,genr,edpmodel,13,1 /out,scratch tbft,solv,1,aml,genr,edpmodel,1,20 tbft,list,1 /out /gopr tblis,all,all /exit
The following example analyses are available for creep curve-fitting:
Example: Parameter-Fitting of a Generalized Exponential Creep Model
/title, Test AML with Creep Fitting (Generalized Exponential) *CREATE,cfcr-gx1-exp1.exp /1,seqv /2,time /3,temp /4,dcre /ninp,3 /nout,1 48000 0.00000001 600 0.139561881 48000 100 600 0.136537485 48000 200 600 0.13357863 48000 350 600 0.129260137 48000 575 600 0.123042756 48000 912.5 600 0.11427289 48000 1418.8 600 0.102274931 48000 2178.1 600 0.086600907 48000 3178.1 600 0.069562197 48000 4178.1 600 0.055875849 48000 5178.1 600 0.044882287 48000 6178.1 600 0.036051707 48000 7178.1 600 0.028958541 48000 8178.1 600 0.023260954 48000 9178.1 600 0.018684366 48000 10000 600 0.015605413 49000 0.00000001 600 0.156321405 48999.9 100 600 0.152897388 49000 200 600 0.14955172 49000 350 600 0.144667553 49000 575 600 0.13763875 49000 912.5 600 0.127730642 49000 1418.8 600 0.114188365 49000 2178.1 600 0.096522022 49000 3178.1 600 0.077355505 49000 4178.1 600 0.061994912 49000 5178.1 600 0.049684493 49000 6178.1 600 0.039818572 49000 7178.1 600 0.031911741 49000 8178.1 600 0.025574981 49000 9178.1 600 0.02049652 49000 10000 600 0.017087032 50000 0.00000001 600 0.174692811 49999.9 100 600 0.170828035 50000 200 600 0.167052428 50000 350 600 0.161542245 50000 575 600 0.153615873 50000 912.5 600 0.142449544 50000 1418.8 600 0.127201919 50000 2178.1 600 0.107338898 50000 3178.1 600 0.085831348 50000 4178.1 600 0.068633277 50000 5178.1 600 0.054881192 50000 6178.1 600 0.04388462 50000 7178.1 600 0.035091436 50000 8178.1 600 0.028060147 50000 9178.1 600 0.022437721 50000 10000 600 0.018670805 51000 0.00000001 600 0.19479418 50999.9 100 600 0.190442359 51000 200 600 0.186191768 51000 350 600 0.179990197 51000 575 600 0.171072977 51000 912.5 600 0.15851861 51000 1418.8 600 0.141391602 51000 2178.1 600 0.119111411 51000 3178.1 600 0.095033312 51000 4178.1 600 0.075822546 51000 5178.1 600 0.060495192 51000 6178.1 600 0.048266228 51000 7178.1 600 0.03850932 51000 8178.1 600 0.03072475 51000 9178.1 600 0.024513812 51000 10000 600 0.020361087 52000 0.00000001 600 0.216749647 51999.8 100 600 0.211858451 52000 200 600 0.207086374 52000 350 600 0.200122706 52000 575 600 0.190113795 52000 912.5 600 0.176031151 52000 1418.8 600 0.156836962 52000 2178.1 600 0.131902072 52000 3178.1 600 0.105006755 52000 4178.1 600 0.083595492 52000 5178.1 600 0.066550064 52000 6178.1 600 0.052980262 52000 7178.1 600 0.042177392 52000 8178.1 600 0.033577267 52000 9178.1 600 0.026730739 52000 10000 600 0.022162289 53000 0.00000001 600 0.240689581 52999.8 100 600 0.235206916 53000 200 600 0.229858661 53000 350 600 0.222056534 53000 575 600 0.210847077 53000 912.5 600 0.195084887 53000 1418.8 600 0.173621175 53000 2178.1 600 0.145776085 53000 3178.1 600 0.115798834 53000 4178.1 600 0.091986075 53000 5178.1 600 0.073070148 53000 6178.1 600 0.058044075 53000 7178.1 600 0.046107948 53000 8178.1 600 0.036626355 53000 9178.1 600 0.029094547 53000 10000 600 0.024078882 *END /prep7 tb,creep,1,,,3 tbdata,1,1e-10,0,0,0,1e-4 ! Add the Creep Data tbft,eadd,1,creep,cfcr-gx1-exp1.exp ! Construct the Fitting Function tbft,fadd,1,aml,genr,crexample, tbft,fix,1,aml,genr,crexample,4,1 ! Original Solution ! 1) 2.50E-21 ! 2) 5 ! 3) 0.5 ! 4) 0 ! 5) 1.00E-06 ! Solve tbft,solve,1,aml,genr,crexample,1,50 ! Save tbft,fset,1,aml,genr,crexample, tblis,all,all
Example: Parameter-Fitting of Temperature-Dependent Creep Data
/title,Test AML + Creep,Exponential Form wit Temp Dependent Data *CREATE,cfcr-ex2-exp1.exp /1,seqv /2,dcre /temp,100 48000 2.18712E-06 49000 2.2091E-06 50000 2.2313E-06 51000 2.25373E-06 52100 2.27865E-06 53100 2.30156E-06 54000 2.32236E-06 55000 2.3457E-06 56000 2.36928E-06 57000 2.39309E-06 58000 2.41714E-06 59000 2.44143E-06 *END *CREATE,cfcr-ex2-exp2.exp /1,seqv /2,dcre /temp,200 48000 5.94521E-06 49000 6.00496E-06 50000 6.06531E-06 51000 6.12626E-06 52100 6.19402E-06 53100 6.25628E-06 54000 6.31284E-06 55000 6.37628E-06 56000 6.44036E-06 57000 6.50509E-06 58000 6.57047E-06 59000 6.6365E-06 *END *CREATE,cfcr-ex2-exp3.exp /1,seqv /2,dcre /temp,300 48000 8.2972E-06 49000 8.38059E-06 50000 8.46482E-06 51000 8.54989E-06 52100 8.64446E-06 53100 8.73134E-06 54000 8.81027E-06 55000 8.89882E-06 56000 8.98825E-06 57000 9.07859E-06 58000 9.16983E-06 59000 9.26199E-06 *END *CREATE,cfcr-ex2-exp4.exp /1,seqv /2,dcre /temp,400 48000 9.80199E-06 49000 9.9005E-06 50000 0.00001 51000 1.01005E-05 52100 1.02122E-05 53100 1.03149E-05 54000 1.04081E-05 55000 1.05127E-05 56000 1.06184E-05 57000 1.07251E-05 58000 1.08329E-05 59000 1.09417E-05 *END /prep7 tb,elas,1 tbdata,1,1000,0.3 tb,creep,1,,,9 tbdata,1,1,1e7,0 ! Add the Creep Data tbft,eadd,1,creep,cfcr-ex2-exp1.exp tbft,eadd,1,creep,cfcr-ex2-exp2.exp tbft,eadd,1,creep,cfcr-ex2-exp3.exp tbft,eadd,1,creep,cfcr-ex2-exp4.exp ! Construct the Fitting Function tbft,fadd,1,aml,genr,crex, ! Solve tbft,fix,1,aml,genr,crex,3,1 tbft,set,1,aml,genr,crex,tdep,1 tbft,set,1,aml,genr,crex,tref,all tbft,solve,1,aml,genr,crex,1,100 ! List tbft,fset,1,aml,genr,crex, tblis,all,all
The following example analyses are available for shape memory alloy curve-fitting:
Example: Parameter-fitting for Shape Memory Alloy Material Models with the Shape Memory Effect Option
*create,unia-sma.exp /1,temp /2,epto /3,s /ninp,2 /nout,1 /ntol,1e-10 5.063 1.499999962E-05 1.04999995 10.126 2.999999924E-05 2.0999999 15.189 4.500000068E-05 3.1500001 20.252 5.999999848E-05 4.19999981 25.315 7.500000356E-05 5.25 30.378 9.000000136E-05 6.30000019 35.441 1.049999992E-04 7.3499999 40.504 1.19999997E-04 8.39999962 45.567 1.349999948E-04 9.44999981 50.63 1.500000071E-04 10.5 55.693 1.650000049E-04 11.5500002 60.756 1.800000027E-04 12.6000004 65.819 1.950000005E-04 13.6499996 70.882 2.099999983E-04 14.6999998 75.945 2.249999961E-04 15.75 81.008 2.399999939E-04 16.7999992 86.071 2.549999917E-04 17.8500004 91.134 2.699999895E-04 18.8999996 96.197 2.849999873E-04 19.9500008 101.26 3.000000142E-04 21 106.323 3.150000121E-04 22.0499992 111.386 3.300000099E-04 23.1000004 116.449 3.450000077E-04 24.1499996 121.512 3.600000055E-04 25.2000008 126.575 3.750000033E-04 26.25 131.638 3.900000011E-04 27.2999992 136.701 4.049999989E-04 28.3500004 141.764 4.199999967E-04 29.3999996 146.827 4.349999945E-04 30.4500008 151.89 4.499999923E-04 31.5 156.953 4.649999901E-04 32.5499992 162.016 4.799999879E-04 33.5999985 167.079 4.949999857E-04 34.6500015 172.142 5.099999835E-04 35.7000008 177.205 5.249999813E-04 36.75 182.268 5.399999791E-04 37.7999992 187.331 5.549999769E-04 38.8499985 192.394 5.699999747E-04 39.9000015 197.457 5.849999725E-04 40.9500008 202.52 6.000000285E-04 42 207.583 6.150000263E-04 43.0499992 212.646 6.300000241E-04 44.0999985 217.709 6.450000219E-04 45.1500015 222.772 6.600000197E-04 46.2000008 227.835 6.750000175E-04 47.25 232.898 6.900000153E-04 48.2999992 237.961 7.050000131E-04 49.3499985 243.024 7.200000109E-04 50.4000015 248.087 7.350000087E-04 51.4500008 253.15 7.500000065E-04 52.5 253.15 7.549999864E-04 52.8499985 253.15 7.600000245E-04 53.2000008 253.15 7.650000043E-04 53.5499992 253.15 7.699999842E-04 53.9000015 253.15 7.750000223E-04 54.25 253.15 7.800000021E-04 54.5999985 253.15 7.84999982E-04 54.9500008 253.15 1.038641058E-03 55.2999992 253.15 1.510307717E-03 55.6500015 253.15 1.981974405E-03 56 253.15 2.453641093E-03 56.3499985 253.15 2.925307606E-03 56.7000008 253.15 3.396974469E-03 57.0499992 253.15 3.868641157E-03 57.4000015 253.15 4.340307787E-03 57.75 253.15 4.811974417E-03 58.0999985 253.15 5.283641105E-03 58.4500008 253.15 5.755307735E-03 58.7999992 253.15 6.226974365E-03 59.1500015 253.15 6.698641053E-03 59.5 253.15 7.170307683E-03 59.8499985 253.15 7.641974313E-03 60.2000008 253.15 8.113641001E-03 60.5499992 253.15 8.585307631E-03 60.9000015 253.15 9.056974319E-03 61.25 253.15 9.528641414E-03 61.5999985 253.15 1.000030758E-02 61.9500008 253.15 1.047197473E-02 62.2999992 253.15 1.09436409E-02 62.6500015 253.15 1.141530799E-02 63 253.15 1.188697421E-02 63.3499985 253.15 1.235864131E-02 63.7000008 253.15 1.283030747E-02 64.0500031 253.15 1.330197463E-02 64.4000015 253.15 1.377364079E-02 64.75 253.15 1.424530789E-02 65.0999985 253.15 1.471697411E-02 65.4499969 253.15 1.518864121E-02 65.8000031 253.15 1.566030737E-02 66.1500015 253.15 1.613197452E-02 66.5 253.15 1.660364069E-02 66.8499985 253.15 1.707530778E-02 67.1999969 253.15 1.754697494E-02 67.5500031 253.15 1.801864017E-02 67.9000015 253.15 1.849030727E-02 68.25 253.15 1.896197442E-02 68.5999985 253.15 1.943364157E-02 68.9499969 253.15 1.990530861E-02 69.3000031 253.15 2.03769739E-02 69.6500015 253.15 2.084864106E-02 70 253.15 2.082864102E-02 68.5999985 253.15 2.080864098E-02 67.1999969 253.15 2.078864101E-02 65.8000031 253.15 2.076864103E-02 64.4000015 253.15 2.074864099E-02 63 253.15 2.072864102E-02 61.5999985 253.15 2.070864098E-02 60.2000008 253.15 2.0688641E-02 58.7999992 253.15 2.066864102E-02 57.4000015 253.15 2.064864099E-02 56 253.15 2.062864101E-02 54.5999985 253.15 2.060864103E-02 53.2000008 253.15 2.0588641E-02 51.7999992 253.15 2.056864102E-02 50.4000015 253.15 2.054864098E-02 49 253.15 2.052864101E-02 47.5999985 253.15 2.050864103E-02 46.2000008 253.15 2.048864099E-02 44.7999992 253.15 2.046864101E-02 43.4000015 253.15 2.044864104E-02 42 253.15 2.0428641E-02 40.5999985 253.15 2.040864102E-02 39.2000008 253.15 2.038864099E-02 37.7999992 253.15 2.036864101E-02 36.4000015 253.15 2.034864103E-02 35 253.15 2.0328641E-02 33.5999985 253.15 2.030864102E-02 32.2000008 253.15 2.028864101E-02 30.7999992 253.15 2.0268641E-02 29.3999996 253.15 2.0248641E-02 28 253.15 2.022864102E-02 26.6000004 253.15 2.020864101E-02 25.2000008 253.15 2.018864101E-02 23.7999992 253.15 2.0168641E-02 22.3999996 253.15 2.014864102E-02 21 253.15 2.012864102E-02 19.6000004 253.15 2.010864101E-02 18.2000008 253.15 2.0088641E-02 16.7999992 253.15 2.006864101E-02 15.3999996 253.15 2.0048641E-02 14 253.15 2.002864101E-02 12.6000004 253.15 2.0008641E-02 11.1999998 253.15 1.998864101E-02 9.80000019 253.15 1.996864101E-02 8.39999962 253.15 1.994864101E-02 7 253.15 1.992864101E-02 5.5999999 253.15 1.990864101E-02 4.19999981 253.15 1.988864101E-02 2.79999995 253.15 1.986864101E-02 1.39999998 253.15 1.984864101E-02 2.712183776E-13 253.20999 1.984864101E-02 -3.598342869E-13 253.26998 1.984864101E-02 -4.484501962E-13 253.32997 1.984864101E-02 2.712183776E-13 253.38996 1.984864101E-02 3.598342869E-13 253.44995 1.984864101E-02 -3.598342869E-13 253.50994 1.984864101E-02 -3.598342869E-13 253.56993 1.984864101E-02 3.598342869E-13 253.62992 1.984864101E-02 3.598342869E-13 253.68991 1.984864101E-02 -3.598342869E-13 253.7499 1.984864101E-02 -4.484501962E-13 253.80989 1.984864101E-02 2.712183776E-13 253.86988 1.984864101E-02 3.598342869E-13 253.92987 1.984864101E-02 -4.484501962E-13 253.98986 1.984864101E-02 -4.484501962E-13 254.04985 1.984864101E-02 4.484501962E-13 254.10984 1.984864101E-02 5.370661056E-13 254.16983 1.984864101E-02 -3.598342869E-13 254.22982 1.984864101E-02 -2.712183776E-13 254.28981 1.984864101E-02 1.826024683E-13 254.3498 1.984864101E-02 2.712183776E-13 254.40979 1.984864101E-02 -4.484501962E-13 254.46978 1.984864101E-02 -2.712183776E-13 254.52977 1.984864101E-02 5.370661056E-13 254.58976 1.984864101E-02 4.484501962E-13 254.64975 1.984864101E-02 -3.598342869E-13 254.70974 1.984864101E-02 -4.484501962E-13 254.76973 1.984864101E-02 5.370661056E-13 254.82972 1.984864101E-02 2.712183776E-13 254.88971 1.984864101E-02 -4.484501962E-13 254.9497 1.984864101E-02 -4.484501962E-13 255.00969 1.984864101E-02 4.484501962E-13 255.06968 1.984864101E-02 1.826024683E-13 255.12967 1.984864101E-02 -3.598342869E-13 255.18966 1.984864101E-02 -5.370661056E-13 255.24965 1.984864101E-02 5.370661056E-13 255.30964 1.984864101E-02 3.598342869E-13 255.36963 1.984864101E-02 -4.484501962E-13 255.42962 1.984864101E-02 -3.598342869E-13 255.48961 1.984864101E-02 5.370661056E-13 255.5496 1.984864101E-02 3.598342869E-13 255.60959 1.984864101E-02 -3.598342869E-13 255.66958 1.984864101E-02 -3.598342869E-13 255.72957 1.984864101E-02 4.484501962E-13 255.78956 1.984864101E-02 4.484501962E-13 255.84955 1.984864101E-02 -4.484501962E-13 255.90954 1.984864101E-02 -4.484501962E-13 255.96953 1.984864101E-02 3.598342869E-13 256.02952 1.984864101E-02 1.826024683E-13 256.08951 1.984864101E-02 -4.484501962E-13 256.1495 1.984864101E-02 -4.484501962E-13 256.20949 1.984864101E-02 4.484501962E-13 256.26948 1.984864101E-02 5.370661056E-13 256.32947 1.984864101E-02 -4.484501962E-13 256.38946 1.984864101E-02 -3.598342869E-13 256.44945 1.984864101E-02 5.370661056E-13 256.50944 1.984864101E-02 2.712183776E-13 256.56943 1.984864101E-02 -4.484501962E-13 256.62942 1.984864101E-02 -2.712183776E-13 256.68941 1.984864101E-02 3.598342869E-13 256.7494 1.984864101E-02 2.712183776E-13 256.80939 1.984864101E-02 -3.598342869E-13 256.86938 1.984864101E-02 -1.826024683E-13 256.92937 1.984864101E-02 3.598342869E-13 256.98936 1.984864101E-02 3.598342869E-13 257.04935 1.984864101E-02 -4.484501962E-13 257.10934 1.984864101E-02 -4.484501962E-13 257.16933 1.984864101E-02 4.484501962E-13 257.22932 1.984864101E-02 3.598342869E-13 257.28931 1.984864101E-02 -3.598342869E-13 257.3493 1.984864101E-02 -3.598342869E-13 257.40929 1.984864101E-02 2.712183776E-13 257.46928 1.984864101E-02 3.598342869E-13 257.52927 1.984864101E-02 -2.712183776E-13 257.58926 1.911508292E-02 0 257.64925 1.838035882E-02 4.484501962E-13 257.70924 1.764563471E-02 0 257.76923 1.691091061E-02 -1.772318051E-13 257.82922 1.617618464E-02 8.861590254E-14 257.88921 1.544146053E-02 4.430795127E-14 257.9492 1.470673643E-02 2.242250981E-13 258.00919 1.397201233E-02 0 258.06918 1.323728729E-02 -1.356091888E-13 258.12917 1.250256319E-02 0 258.18916 1.176783908E-02 -4.430795127E-14 258.24915 1.103311405E-02 0 258.30914 1.029838994E-02 2.685330528E-13 258.36913 9.563664906E-03 3.128410074E-13 258.42912 8.828940801E-03 4.430795127E-14 258.48911 8.094216697E-03 8.861590254E-14 258.5491 7.359492127E-03 -1.342665264E-13 258.60909 6.624767557E-03 0 258.66908 5.890042987E-03 4.430795127E-14 258.72907 5.155318417E-03 -2.215397563E-14 258.78906 4.420594312E-03 -2.215397563E-14 258.84905 3.685869742E-03 -4.497928587E-14 258.90904 2.951145172E-03 -1.040565576E-14 258.96903 2.216420835E-03 2.215397563E-14 259.02902 1.481696381E-03 7.854591408E-14 259.08901 7.469718694E-04 -5.395836027E-14 259.149 1.224744847E-05 3.104913406E-15 *end /prep7 /com Defining SMA Material Properties ! Initial Value of Parameters C1=100 !MPA [Hardening Parameter] C2=253.15 !K [Ref Temp] C3=100 !MPA [ Elastic Limit] C4=10 !MPA C5=0.03 ! [Max. transformation strain] C6=60e3 !MPA, [Martensite Modulus] C7=0 ! M tb,elas,1 tbdat,,70.0e3, 0.33 /com Invoking material model for SME effect TB,SMA,1,,,MEFF tbtemp,253.15 TBDATA,1,C1,C2,C3,C4,C5,C6,C7 tbft,fadd,1,aml,genr,sma tbft,eadd,1,unia,unia-sma.exp ! Set Reference Temperature and Maximum Transformation Strain tbft,fix,1,aml,genr,sma,2,1 tbft,fix,1,aml,genr,sma,5,1 tbft,solve,1,aml,genr,sma,1,100 tbft,fset,1,aml,genr,sma tblis,all,all fini /exit
Example: Parameter-fitting for Shape Memory Alloy Material Models with the Super Elasticity Option
*create,unia-sma-supe.exp /1,epto /2,s /ninp,1 /nout,1 0.100000E-002 60.0000 0.200000E-002 120.000 0.300000E-002 180.000 0.400000E-002 240.000 0.500000E-002 300.000 0.600000E-002 360.000 0.700000E-002 420.000 0.800000E-002 480.000 0.900000E-002 500.930 0.100000E-001 502.326 0.110000E-001 503.721 0.120000E-001 505.116 0.130000E-001 506.512 0.140000E-001 507.907 0.150000E-001 509.302 0.160000E-001 510.698 0.170000E-001 512.093 0.180000E-001 513.488 0.190000E-001 514.884 0.200000E-001 516.279 0.210000E-001 517.674 0.220000E-001 519.070 0.230000E-001 520.465 0.240000E-001 521.860 0.250000E-001 523.256 0.260000E-001 524.651 0.270000E-001 526.047 0.280000E-001 527.442 0.290000E-001 528.837 0.300000E-001 530.233 0.310000E-001 531.628 0.320000E-001 533.023 0.330000E-001 534.419 0.340000E-001 535.814 0.350000E-001 537.209 0.360000E-001 538.605 0.370000E-001 540.000 0.380000E-001 541.395 0.390000E-001 542.791 0.400000E-001 544.186 0.410000E-001 545.581 0.420000E-001 546.977 0.430000E-001 548.372 0.440000E-001 549.767 0.450000E-001 551.163 0.460000E-001 552.558 0.470000E-001 553.953 0.480000E-001 555.349 0.490000E-001 556.744 0.500000E-001 558.140 0.510000E-001 559.535 0.520000E-001 560.930 0.530000E-001 562.326 0.540000E-001 563.721 0.550000E-001 565.116 0.560000E-001 566.512 0.570000E-001 567.907 0.580000E-001 569.302 0.590000E-001 570.698 0.600000E-001 572.093 0.610000E-001 573.488 0.620000E-001 574.884 0.630000E-001 576.279 0.640000E-001 577.674 0.650000E-001 579.070 0.660000E-001 580.465 0.670000E-001 581.860 0.680000E-001 583.256 0.690000E-001 584.651 0.700000E-001 586.047 0.710000E-001 587.442 0.720000E-001 588.837 0.730000E-001 590.233 0.740000E-001 591.628 0.750000E-001 593.023 0.760000E-001 594.419 0.770000E-001 595.814 0.780000E-001 597.209 0.790000E-001 598.605 0.800000E-001 600.000 0.810000E-001 660.000 0.820000E-001 720.000 0.830000E-001 780.000 0.840000E-001 840.000 0.850000E-001 900.000 0.860000E-001 960.000 0.870000E-001 1020.00 0.880000E-001 1080.00 0.890000E-001 1140.00 0.900000E-001 1200.00 0.910000E-001 1260.00 0.920000E-001 1320.00 0.930000E-001 1380.00 0.940000E-001 1440.00 0.950000E-001 1500.00 0.960000E-001 1560.00 0.970000E-001 1620.00 0.980000E-001 1680.00 0.990000E-001 1740.00 0.100000 1800.00 0.990000E-001 1740.00 0.980000E-001 1680.00 0.970000E-001 1620.00 0.960000E-001 1560.00 0.950000E-001 1500.00 0.940000E-001 1440.00 0.930000E-001 1380.00 0.920000E-001 1320.00 0.910000E-001 1260.00 0.900000E-001 1200.00 0.890000E-001 1140.00 0.880000E-001 1080.00 0.870000E-001 1020.00 0.860000E-001 960.000 0.850000E-001 900.000 0.840000E-001 840.000 0.830000E-001 780.000 0.820000E-001 720.000 0.810000E-001 660.000 0.800000E-001 600.000 0.790000E-001 540.000 0.780000E-001 480.000 0.770000E-001 420.000 0.760000E-001 360.000 0.750000E-001 300.000 0.740000E-001 298.605 0.730000E-001 297.209 0.720000E-001 295.814 0.710000E-001 294.419 0.700000E-001 293.023 0.690000E-001 291.628 0.680000E-001 290.233 0.670000E-001 288.837 0.660000E-001 287.442 0.650000E-001 286.047 0.640000E-001 284.651 0.630000E-001 283.256 0.620000E-001 281.860 0.610000E-001 280.465 0.600000E-001 279.070 0.590000E-001 277.674 0.580000E-001 276.279 0.570000E-001 274.884 0.560000E-001 273.488 0.550000E-001 272.093 0.540000E-001 270.698 0.530000E-001 269.302 0.520000E-001 267.907 0.510000E-001 266.512 0.500000E-001 265.116 0.490000E-001 263.721 0.480000E-001 262.326 0.470000E-001 260.930 0.460000E-001 259.535 0.450000E-001 258.140 0.440000E-001 256.744 0.430000E-001 255.349 0.420000E-001 253.953 0.410000E-001 252.558 0.400000E-001 251.163 0.390000E-001 249.767 0.380000E-001 248.372 0.370000E-001 246.977 0.360000E-001 245.581 0.350000E-001 244.186 0.340000E-001 242.791 0.330000E-001 241.395 0.320000E-001 240.000 0.310000E-001 238.605 0.300000E-001 237.209 0.290000E-001 235.814 0.280000E-001 234.419 0.270000E-001 233.023 0.260000E-001 231.628 0.250000E-001 230.233 0.240000E-001 228.837 0.230000E-001 227.442 0.220000E-001 226.047 0.210000E-001 224.651 0.200000E-001 223.256 0.190000E-001 221.860 0.180000E-001 220.465 0.170000E-001 219.070 0.160000E-001 217.674 0.150000E-001 216.279 0.140000E-001 214.884 0.130000E-001 213.488 0.120000E-001 212.093 0.110000E-001 210.698 0.100000E-001 209.302 0.900000E-002 207.907 0.800000E-002 206.512 0.700000E-002 205.116 0.600000E-002 203.721 0.500000E-002 202.326 0.400000E-002 200.930 0.300000E-002 180.000 0.200000E-002 120.000 0.100000E-002 60.0000 0.00000 0.00000 -0.100000E-002 -60.0000 -0.200000E-002 -120.000 -0.300000E-002 -180.000 -0.400000E-002 -240.000 -0.500000E-002 -300.000 -0.600000E-002 -360.000 -0.700000E-002 -420.000 -0.800000E-002 -480.000 -0.900000E-002 -540.000 -0.100000E-001 -600.000 -0.110000E-001 -660.000 -0.120000E-001 -678.288 -0.130000E-001 -680.794 -0.140000E-001 -683.300 -0.150000E-001 -685.806 -0.160000E-001 -688.311 -0.170000E-001 -690.817 -0.180000E-001 -693.323 -0.190000E-001 -695.829 -0.200000E-001 -698.334 -0.210000E-001 -700.840 -0.220000E-001 -703.346 -0.230000E-001 -705.851 -0.240000E-001 -708.357 -0.250000E-001 -710.863 -0.260000E-001 -713.369 -0.270000E-001 -715.874 -0.280000E-001 -718.380 -0.290000E-001 -720.886 -0.300000E-001 -723.391 -0.310000E-001 -725.897 -0.320000E-001 -728.403 -0.330000E-001 -730.909 -0.340000E-001 -733.414 -0.350000E-001 -735.920 -0.360000E-001 -738.426 -0.370000E-001 -740.932 -0.380000E-001 -743.437 -0.390000E-001 -745.943 -0.400000E-001 -748.449 -0.410000E-001 -750.954 -0.420000E-001 -753.460 -0.430000E-001 -755.966 -0.440000E-001 -758.472 -0.450000E-001 -760.977 -0.460000E-001 -763.483 -0.470000E-001 -765.989 -0.480000E-001 -768.495 -0.490000E-001 -771.000 -0.500000E-001 -773.506 -0.510000E-001 -776.012 -0.520000E-001 -778.517 -0.530000E-001 -781.023 -0.540000E-001 -783.529 -0.550000E-001 -786.035 -0.560000E-001 -788.540 -0.570000E-001 -791.046 -0.580000E-001 -793.552 -0.590000E-001 -796.057 -0.600000E-001 -798.563 -0.610000E-001 -801.069 -0.620000E-001 -803.575 -0.630000E-001 -806.080 -0.640000E-001 -808.586 -0.650000E-001 -811.092 -0.660000E-001 -855.652 -0.670000E-001 -915.652 -0.680000E-001 -975.652 -0.690000E-001 -1035.65 -0.700000E-001 -1095.65 -0.710000E-001 -1155.65 -0.720000E-001 -1215.65 -0.730000E-001 -1275.65 -0.740000E-001 -1335.65 -0.750000E-001 -1395.65 -0.760000E-001 -1455.65 -0.770000E-001 -1515.65 -0.780000E-001 -1575.65 -0.790000E-001 -1635.65 -0.800000E-001 -1695.65 -0.810000E-001 -1755.65 -0.820000E-001 -1815.65 -0.830000E-001 -1875.65 -0.840000E-001 -1935.65 -0.850000E-001 -1995.65 -0.860000E-001 -2055.65 -0.870000E-001 -2115.65 -0.880000E-001 -2175.65 -0.890000E-001 -2235.65 -0.900000E-001 -2295.65 -0.910000E-001 -2355.65 -0.920000E-001 -2415.65 -0.930000E-001 -2475.65 -0.940000E-001 -2535.65 -0.950000E-001 -2595.65 -0.960000E-001 -2655.65 -0.970000E-001 -2715.65 -0.980000E-001 -2775.65 -0.990000E-001 -2835.65 -0.100000 -2895.65 -0.990000E-001 -2835.65 -0.980000E-001 -2775.65 -0.970000E-001 -2715.65 -0.960000E-001 -2655.65 -0.950000E-001 -2595.65 -0.940000E-001 -2535.65 -0.930000E-001 -2475.65 -0.920000E-001 -2415.65 -0.910000E-001 -2355.65 -0.900000E-001 -2295.65 -0.890000E-001 -2235.65 -0.880000E-001 -2175.65 -0.870000E-001 -2115.65 -0.860000E-001 -2055.65 -0.850000E-001 -1995.65 -0.840000E-001 -1935.65 -0.830000E-001 -1875.65 -0.820000E-001 -1815.65 -0.810000E-001 -1755.65 -0.800000E-001 -1695.65 -0.790000E-001 -1635.65 -0.780000E-001 -1575.65 -0.770000E-001 -1515.65 -0.760000E-001 -1455.65 -0.750000E-001 -1395.65 -0.740000E-001 -1335.65 -0.730000E-001 -1275.65 -0.720000E-001 -1215.65 -0.710000E-001 -1155.65 -0.700000E-001 -1095.65 -0.690000E-001 -1035.65 -0.680000E-001 -975.652 -0.670000E-001 -915.652 -0.660000E-001 -855.652 -0.650000E-001 -795.652 -0.640000E-001 -735.652 -0.630000E-001 -675.652 -0.620000E-001 -615.652 -0.610000E-001 -555.652 -0.600000E-001 -495.652 -0.590000E-001 -435.652 -0.580000E-001 -404.620 -0.570000E-001 -402.114 -0.560000E-001 -399.608 -0.550000E-001 -397.103 -0.540000E-001 -394.597 -0.530000E-001 -392.091 -0.520000E-001 -389.586 -0.510000E-001 -387.080 -0.500000E-001 -384.574 -0.490000E-001 -382.068 -0.480000E-001 -379.563 -0.470000E-001 -377.057 -0.460000E-001 -374.551 -0.450000E-001 -372.045 -0.440000E-001 -369.540 -0.430000E-001 -367.034 -0.420000E-001 -364.528 -0.410000E-001 -362.023 -0.400000E-001 -359.517 -0.390000E-001 -357.011 -0.380000E-001 -354.505 -0.370000E-001 -352.000 -0.360000E-001 -349.494 -0.350000E-001 -346.988 -0.340000E-001 -344.483 -0.330000E-001 -341.977 -0.320000E-001 -339.471 -0.310000E-001 -336.965 -0.300000E-001 -334.460 -0.290000E-001 -331.954 -0.280000E-001 -329.448 -0.270000E-001 -326.942 -0.260000E-001 -324.437 -0.250000E-001 -321.931 -0.240000E-001 -319.425 -0.230000E-001 -316.920 -0.220000E-001 -314.414 -0.210000E-001 -311.908 -0.200000E-001 -309.402 -0.190000E-001 -306.897 -0.180000E-001 -304.391 -0.170000E-001 -301.885 -0.160000E-001 -299.379 -0.150000E-001 -296.874 -0.140000E-001 -294.368 -0.130000E-001 -291.862 -0.120000E-001 -289.357 -0.110000E-001 -286.851 -0.100000E-001 -284.345 -0.900000E-002 -281.839 -0.800000E-002 -279.334 -0.700000E-002 -276.828 -0.600000E-002 -274.322 -0.500000E-002 -271.817 -0.400000E-002 -240.000 -0.300000E-002 -180.000 -0.200000E-002 -120.000 -0.100000E-002 -60.0000 0.00000 0.00000 *end /prep7 tb,elas,1 tbdata,,60.0e3,0.3 tb,sma,1,,6,supe tbdata,1,1000,1000,1000,1000,0.01,0.01,0 tbft,fadd,1,aml,genr,sma tbft,eadd,1,unia,unia-sma-supe.exp tbft,solve,1,aml,genr,sma,1,100 tbft,fset,1,aml,genr,sma tblis,all,all fini /exit
The following example analysis is available for partial solve options:
Example: Partial Solve Options for Prony Series Models
*create,sdec-1.exp 1.00E-05 2992.50 0.01 2992.49 1 2991.16 2 2989.83 4 2987.20 6 2984.62 8 2982.09 10 2979.60 20 2967.80 40 2947.16 60 2929.90 80 2915.47 100 2903.41 200 2867.03 400 2846.11 600 2842.62 800 2842.04 1000 2841.94 2000 2841.92 4000 2841.92 6000 2841.92 8000 2841.92 10000 2841.92 20000 2841.92 40000 2841.92 60000 2841.92 80000 2841.92 100000 2841.92 200000 2841.92 400000 2841.92 600000 2841.92 800000 2841.92 1000000 2841.92 *end *create,bdec-1.exp 1.00E-05 6485.69 0.01 6485.66 1 6482.79 2 6479.92 4 6474.24 6 6468.67 8 6463.20 10 6457.82 20 6432.32 40 6387.68 60 6350.34 80 6319.10 100 6292.98 200 6214.06 400 6168.52 600 6160.88 800 6159.60 1000 6159.38 2000 6159.34 4000 6159.34 6000 6159.34 8000 6159.34 10000 6159.34 20000 6159.34 40000 6159.34 60000 6159.34 80000 6159.34 100000 6159.34 200000 6159.34 400000 6159.34 600000 6159.34 800000 6159.34 1000000 6159.34 *end /prep7 TB,ELAS,1 TBDAT,,7782.834,0.3 TB,PRON, 1, 1, 1,SHEA TBDATA,1,8.031872e-02,5.116459e+01 TB,PRON, 1, 1, 1,BULK TBDATA,1,8.031872e-02,5.116459e+01 TBLIS,ALL,ALL /prep7 ! Define Relaxation Modulus Vs Time Data tbft,eadd,1,sdec,sdec-1.exp ! Define Relaxation Modulus Vs Time Data tbft,eadd,1,bdec,bdec-1.exp ! Define Material tbft,fadd,1,aml,genr,prexample tbft,set,1,aml,genr,prexample,5,7782.834 tbft,set,1,aml,genr,prexample,6,0.3 tbft,set,1,aml,genr,prexample,1, 1 tbft,set,1,aml,genr,prexample,2, 100 tbft,set,1,aml,genr,prexample,3, 1 tbft,set,1,aml,genr,prexample,4, 100 tbft,fix,1,aml,genr,prexample, 5, 1 tbft,fix,1,aml,genr,prexample, 6, 1 tbft,set,1,aml,genr,prexample,comp,pshear tbft,solve,1,aml,genr,prexample,1,50 /out /gopr tbft,list,1 tbft,set,1,aml,genr,prexample,comp,pbulk tbft,solve,1,aml,genr,prexample,1,50 /out /gopr tbft,list,1 tbft,set,1,aml,genr,prexample,comp,defa tbft,solve,1,aml,genr,prexample,1,50 tbft,list,1 tbft,fset,1,aml,genr,prexample tblis,all,all fini /exit