/Collapse all
- 1. Coupled-Field Analyses
 - 2. Direct Coupled-Field Analysis
 - 2.1. Lumped Electric Elements
 - 2.2. Thermal-Electric Analysis
 - 2.2.1. Elements Used in a Thermal-Electric Analysis
 - 2.2.2. Performing a Thermal-Electric Analysis
 - 2.2.3. Example: Thermoelectric Cooler Analysis
 - 2.2.4. Example: Thermoelectric Generator Analysis
 - 2.2.5. Example: Transient Thermoelectric Analysis of a Peltier Cooler
 - 2.2.6. Other Thermal-Electric Analysis Examples
 
- 2.3. Piezoelectric Analysis
 - 2.3.1. Hints and Recommendations for Piezoelectric Analysis
 - 2.3.2. Material Properties for Piezoelectric Analysis
 - 2.3.3. Additional Material Properties for Dynamic Piezoelectric Analysis
 - 2.3.4. Example: Piezoelectric Analysis of a Bimorph
 - 2.3.5. Example: Piezoelectric Analysis with Coriolis Effect
 - 2.3.6. Example: Mode-Superposition Piezoelectric Analysis
 - 2.3.7. Example: Piezoelectric Vibrations of a Quartz Plate
 - 2.3.8. Example: Damped Vibrations of a Piezoelectric Disc
 - 2.3.9. Example: Piezoelectric Perfectly Matched Layers
 - 2.3.10. Other Piezoelectric Analysis Examples
 
- 2.4. Electrostatic-Structural Analysis
 - 2.4.1. Elements Used in an Electrostatic-Structural Analysis
 - 2.4.2. Performing an Electrostatic-Structural Analysis
 - 2.4.3. Example: Electrostatic-Structural Analysis of a Dielectric Elastomer
 - 2.4.4. Example: Electrostatic-Structural Analysis of a MEMS Switch
 - 2.4.5. Example: Electromechanical Comb Finger Analysis
 - 2.4.6. Example: Electrostatic-Structural Analysis of a Folded Dielectric Elastomer Actuator
 - 2.4.7. Example: Electrostatic-Structural Analysis of a Clamped-Clamped Beam
 - 2.4.8. Example: Electrostatic-Structural Analysis of a Micromirror
 
- 2.5. Piezoresistive Analysis
 - 2.6. Structural-Thermal Analysis
 - 2.6.1. Elements Used in a Structural-Thermal Analysis
 - 2.6.2. Performing a Structural-Thermal Analysis
 - 2.6.3. Example: Thermoelastic Damping in a Silicon Beam
 - 2.6.4. Example: Thermoplastic Heating of a Thick-Walled Sphere
 - 2.6.5. Example: Viscoelastic Heating of a Rubber Cylinder
 - 2.6.6. Example: Simulation of Tensile Testing with a Nonlocal Damage Model
 - 2.6.7. Other Structural-Thermal Analysis Examples
 
- 2.7. Structural-Thermal-Electric Analyses
 - 2.8. Magneto-Structural Analysis
 - 2.9. Electromechanical Analysis
 - 2.10. Thermal-Electromagnetic Analysis
 - 2.11. Structural Implicit Gradient Regularization
 - 2.12. Structural-Pore-Fluid-Diffusion-Thermal Analysis
 - 2.12.1. Structural-Pore-Fluid-Diffusion-Thermal Applications
 - 2.12.2. Understanding Porous Media Analysis
 - 2.12.3. Material Models, Solid Phase, and Effective Stress
 - 2.12.4. Fluid Flow in Porous Media
 - 2.12.5. Heat Transfer in Porous Media
 - 2.12.6. Geostatic Stress Equilibrium
 - 2.12.7. Automatic Time-Stepping
 - 2.12.8. Solution Control via a Steady-State Condition
 - 2.12.9. Initial Condition and Initial State
 - 2.12.10. Field Variables
 - 2.12.11. Boundary Conditions and Loading
 - 2.12.12. Coupled Pore-Pressure-Thermal Element Support
 - 2.12.13. Results Output
 - 2.12.14. Performing a Structural Pore-Fluid-Diffusion Analysis
 
- 2.13. Structural-Diffusion Analysis
 - 2.14. Thermal-Diffusion Analysis
 - 2.15. Structural-Thermal-Diffusion Analysis
 - 2.16. Electric-Diffusion Analysis
 - 2.17. Thermal-Electric-Diffusion Analysis
 - 2.18. Structural-Electric-Diffusion Analysis
 - 2.19. Structural-Thermal-Electric-Diffusion Analysis
 
- 3. Load-Transfer Coupled Physics Analysis via the LDREAD command
 - 4. Unidirectional Load-Transfer for CFD Applications
 - 5. Coupled Physics Circuit Simulation