The veneer is represented by viscoelastic material behavior while the core is assumed to behave elastically.
The following material property data is available for this problem:
The following material properties are used for the transient thermal analysis:
| Temperature (°C) | Conductivity (W/mm °C) | Specific Heat (J/kg °C) | Density (kg/mm3) |
|---|---|---|---|
| Core | |||
| 30 | 0.004002012 | 914.540 | 2.514E-6 |
| 200 | 0.003254307 | 1119.296 | |
| 500 | 0.002973238 | 1284.875 | |
| 700 | 0.003255384 | 1347.341 | |
| Veneer | |||
| 30 | 0.010005623 | 742.274 | 2.531E-6 |
| 200 | 0.006603368 | 947.144 | |
| 500 | 0.004560125 | 1105.625 | |
| 700 | 0.004299903 | 1167.299 | |
The thermal contact conductance is 4E-5 W/(mm2 °C).
The following material properties are used for the static structural analysis:
Core
| Young’s Modulus (GPa) | Poisson's Ratio | Density (kg/mm3) | Temperature (°C) | Coefficients of Thermal Expansion |
|---|---|---|---|---|
| 96 | 0.24 | 2.514E-6 | 30 | 1.019E-5 |
| 40 | 1.007E-5 | |||
| 50 | 9.955E-6 | |||
| 60 | 9.848E-6 | |||
| 100 | 9.499E-6 | |||
| 200 | 9.190E-6 | |||
| 300 | 9.689E-6 | |||
| 400 | 1.099E-5 | |||
| 500 | 1.311E-5 | |||
| 700 | 1.975E-5 |
Veneer
| Young’s Modulus (GPa) | Poisson's Ratio | Density (kg/mm3) | Reference Temperature Tref (°C) | H/R (° K) * |
|---|---|---|---|---|
| 65 | 0.26 | 2.531E-6 | 700 | 46400 |
* H/R = activation energy / ideal gas constant
| Prony Series | Shift Function Constants | |||
|---|---|---|---|---|
| Gi / G0 | τi | Fictive Temperature (°C) | Weight | Relaxation Time (Sec) |
| 0.48844 | 1.58E-05 | 750 | 0.25 | 1.58E-05 |
| 0.44003 | 0.000163 | 726 | 0.25 | 0.000163 |
| 0.03576 | 0.003853 | 705 | 0.25 | 0.003853 |
| 0.00487 | 0.008050 | 687 | 0.25 | 0.008050 |
Following are the polynomial coefficients for glass and liquid thermal expansion:
| α g0 = 10.7510E-6 ppm / °C |
| α g1 = -2.4208E-8 ppm / °C |
| α g2 = 5.7267E-11 ppm / °C |
| α 10 = -39.1180E-6 ppm / °C |
| α 11 = 1.1526E-7 ppm / °C |