Bibliography

[1] T. J., Barth. The design and application of upwind schemes on unstructured meshes. Technical Report AIAA-89-0366. AIAA 27th Aerospace Sciences Meeting. Reno, Nevada:

[2] G. K. Batchelor. An Introduction to Fluid Dynamics. Cambridge Univ. Press. Cambridge, England:

[3] H. C. Chen and V. C. Patel. Near-Wall Turbulence Models for Complex Flows Including Separation. AIAA Journal, 26(6), 1988. pg. 641-648.

[4] D.  Choudhury. "Introduction to the Renormalization Group Method and Turbulence Modeling". Technical Memorandum TM-107, 1993.

[5] M. F. Cohen and D. P. Greenberg. "The hemi-cube: a radiosity solution for complex environments". Computer Graphics, 19(3). 1985. pg. 31-40.

[6] J.  Dacles-Mariani, G. G. Zilliac, J. S. Chow, and P.  Bradshaw. Numerical/Experimental Study of a Wingtip Vortex in the Near Field. AIAA Journal, 33(9). pg. 1561-1568. 1995.

[7] R. A Henkes, F. F. van der Flugt, and C. J. Hoogendoorn. Natural Convection Flow in a Square Cavity Calculated with Low-Reynolds-Number Turbulence Models. Int. J. Heat Mass Transfer, 34. pg. 1543-1557. 1991.

[8] J. O. Hinze. Turbulence. McGraw-Hill Publishing Co.. New York: 1975.

[9] P.  Huang, P.  Bradshaw, and T.  Coakley. Skin Friction and Velocity Profile Family for Compressible Turbulent Boundary Layers. AIAA Journal, 31(9). pg. 1600-1604. September 1993.

[10] B. R. Hutchinson and G. D. Raithby. A Multigrid Method Based on the Additive Correction Strategy. Numerical Heat Transfer, 9. pg. 511-537. 1986.

[11] I. E. Idelchick. Handbook of Hydraulic Resistances. 2nd Edition. Hemisphere Publishing Corp.,. 1975.

[12] JEDEC Solid State Products Engineering Council. Integrated Circuits Thermal Test Method Environment Conditions--Natural Convection (Still Air). EIA/JEDEC Standard EIA/JESD51-2, Electronic Industries Association. December 1995.

[13] JEDEC Solid State Technology Association. Integrated Circuit Thermal Test Method Environmental Conditions--Forced Convection (Moving Air). JEDEC Standard JESD51-6,Electronic Industries Alliance. March 1999.

[14] T.  Jongen. Simulation and Modeling of Turbulent Incompressible Flows. PhD thesis, EPF Lausanne, Lausanne, Switzerland. 1992.

[15] B.  Kader. Temperature and Concentration Profiles in Fully Turbulent Boundary Layers. Int. J. Heat Mass Transfer, 24(9). pg. 1541-1544. 1993.

[16] V.  Kumar and G.  Karypis. METIS - A Software Package for Partitioning Unstructured Graphs, Partitioning Meshes, and Computing Fill-Reducing Orderings of Sparse Matrices, Version 3.0. University of Minnesota and Army HPC Research Center. 1997.

[17] W. M. Kays. Turbulent Prandtl Number - Where Are We?. J. Heat Transfer,116. pg. 284-295. 1994.

[18] B. E. Launder and D. D. Spalding. Lectures in Mathematical Models of Turbulence. Academic Press. London: 1972.

[19] M. F. Modest. Radiative Heat Transfer Series in Mechanical Engineering. 2nd Edition. McGraw Hill. 1993.

[20] S. V. Patankar. Numerical Heat Transfer and Fluid Flow. 2nd Edition. Hemisphere Publishing Corp. Washington, D.C: 1980.

[21] C. M. Rhie and W. L. Chow. Numerical Study of the Turbulent Flow Past an Airfoil with Trailing Edge Separation. AIAA Journal, 21(11). pg. 1523-1532. November 1983.

[22] J. A. Snyman. A New and Dynamic Method for Unconstrained Minimization. Applied Mathematical Modeling, 6. pg. 449-462. 1982.

[23] J. A. Snyman. An improved Version of the Original Leap-Frog Method for Unconstrained Minimization. Applied Mathematical Modeling, 7. pg. 216-218. 1983.

[24] J. A. Snyman. The LFOPC Leap-Frog Algorithm for Constrained Optimization. Computers and Mathematics with Applications, 40. pg. 1085-1096. 2000.

[25] J. A Snyman, J.  Roux, and N.  Stander, A. Dynamic Penalty Function Method for the Solution of Structural Optimization Problems.. Applied Mathematical Modeling, 18. pg. 453-460. 1994.

[26] P.  Spalart and S.  Allmaras. A one-equation turbulence model for aerodynamic flows. Technical Report AIAA-92-0439, American Institute of Aeronautics and Astronautics. February 1992.

[27] F.  White and G.  Chris. A Simple New Analysis of Compressible Turbulent Skin Friction Under Arbitrary Conditions. Technical Report AFFDL-TR-70-133. February 1971.

[28] M.  Wolfstein. The Velocity and Temperature Distribution of One-Dimensional Flow with Turbulence Augmentation and Pressure Gradient. Int. J. Heat Mass Transfer, 12. pg. 301-318. 1969.

[29] V.  Yakhot and S. A. Orszag. Renormalization Group Analysis of Turbulence: I. Basic Theory. Journal of Scientific Computing, 1(1). pg. 1-51. 1986.

[30] F. R. Menter, R. B. Langtry, S. R. Likki, Y. B. Suzen, P. G. Huang, and S. Volker. "A Correlation Based Transition Model Using Local Variables Part 1 - Model Formulation". (ASME-GT2004-53452)2004.

[31] P. M. Gresho, R. L. Lee, and R. L. Sani. "On the Time-Dependent Solution of the Incompressible Navier-Stokes Equations in Two and Three Dimensions". In Recent Advances in Numerical Methods in Fluids. Pineridge Press, Swansea, UK. 1980.

[32] X. Hu, S. Lin, S. Stanton, and W. Lian. A State Space Thermal Model for HEV/EV Battery Modeling. SAE International. (10.4271/2011-01-1364)2011.

[33] Grimme, E.J.. "Krylov projection methods for model reduction". Doctoral disseration, University of Illinois at Urbana-Champaign. 1997.

[34] Antoulas, W.E.. "Approximation of Large-Scale Dynamical Systems". Advances in Design and Control, 6. SIAM. 2005.

[35] Arnoldi, W.E.. The Principal of Minimized Iterations in the Solution of the Matrix Eigenvalue Problem. Quarterly of Applied Mathematics, 9(1). pg. 17-29. 1951.