Bibliography

[1] Lutz Vogel and Wolfgang Peukert. From single particle impact behaviour to modelling of impact mills. Chemical Engineering Science. 60 (18). 5164–5176. 2005.

[2] Fengnian Shi and Toni Kojovic. Validation of a model for impact breakage incorporating particle size effect. International Journal of Mineral Processing. 82 (3). 156–163. 2007.

[3] Alexander Potapov and Timothy Donahue. Technical Report Rocky DEM, Inc.: Computer simulation of coal breakage in conveyor transfer chutes with Rocky discrete element method package. 2012.

[4] Tavares, Luis and King, R.P. Single-particle fracture under impact loading. International Journal of Mineral Processing. 54. 1–28. 1998.

[5] Carvalho, Rodrigo M. and Tavares, L. M.. Predicting the effect of operating and design variables on breakage rates using the mechanistic ball mill model. Minerals and Engineering. 43. 91–101. 2013.

[6] Tavares, L. M. and Carvalho, R. M.. Modeling breakage rates of coarse particles in ball mills. Mineral Engineering. 22. 650–659. 2009.

[7] Tavares, L. M.. Analysis of particle fracture by repeated stressing as damage accumulation. Powder Technology. 90 (3). 327–339. 2009.

[8] Tavares, L. M. and King, R. P.. Modeling of particle fracture by repeated impacts using continuum damage mechanics. Powder Technology. 123 (2). 138–146. 2002.

[9] Malone, K. F. and Xu, B. H.. Determination of contact parameters for discrete element method simulations of granular systems. Particuology. 6. 521–528. 2008.

[10] Tsuji, Y. and Kawaguchi, T. and Tanaka, T.. Discrete particle simulation of two-dimensional fluidized bed. Powder Technology. 77. 79–87. 1993.

[11] Pasha, M. and Dogbe, S. and Hare, C. and Hassanpour, A. and Ghadiri, M.. A linear model of elasto-plastic and adhesive contact deformation. Granular Matter. 16. 151–162. 2014.

[12] Massih Pasha. "Modelling of flowability measurement of cohesive powders using small quantities". PhD Thesis. University of Leeds. 2013.

[13] Johnson, K. L. and Kendal, K. and Roberts, A. D.. Surface energy and the contact of elastic solids. Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences. 324. 301–313. 1971.

[14] Johnson, K. L.. Contact mechanics. Cambridge University Press. 1985.

[15] Ai, J. and Chen, J. F. and Rotter, J. M. and Ooi, J. Y.. Assessment of rolling resistance models in discrete element simulations. Powder Technology. 206. 269–282. 2010.

[16] Wensrich, C. M. and Katterfeld, A.. Rolling friction as a technique for modelling particle shape in {DEM}. Powder Technology. 217. 409–417. 2012.

[17] Schwager, T. and P\"{o}schel, T.. Coefficient of restitution and linear-dashpot model revisited. Granular Matter. 60 (18). 465–469. 2007.

[18] Tsuji, Y. and Tanaka, T. and Ishida, T.. Lagrangian numerical simulation of plug flow of cohesionless particles in a horizontal pipe. Powder Technology. 71. 239–250. 1992.

[19] Walton, O. R. and Braun, R. L.. Viscosity, granular-temperature, and stress calculations for shearing assemblies of inelastic, frictional disks. Journal of Rheology. 30. 948–980. 1896.

[20] Barrios, G. K. P. and Carvalho, R. M. and Tavares, L. M.. Modeling breakage of monodispersed particles in unconfined beds. Minerals Engineering. 24. 308–318. 2011.

[21] Guo, Y. and Wassgreen C. and Curtis, J. S. and Xu, D.. A bonded sphero-cylinder model for the discrete element simulation of elastic-plastic fibers. Chemical Engineering Science. 175. 118–129. 2018.

[22] Potapov, A. V. and Campbell, C. S.. A three-dimensional simulation of brittle solid fracture. International Journal of Modern Physics. 7 (5). 717–729. 1996.

[23] Antypov, D. and Elliott, J. A.. On an analytical solution for the damped Hertzian spring. Europhysics Letters. 94 (5). 2011.

[24] Cundall, P. A. and Strack, D. L.. A discrete numerical model for granular assemblies. Geotechnique. 29 (1). 47–65. 1979.

[25] Hertz, H.. {\"Uber} die ber\"uhrung fester elastischer k\"orper ({On} the contact of elastic solids). English translation, Macmillan, London, 1896.. 92. 156–171. 1896.

[26] Qiu, X. and Potapov, A. and Song, M. and Nordell, L.. Prediction of wear of mill lifters using discrete element method. "2001 SAG Conference Proceedings". 2001.

[27] Archard, J. F.. Wear theory and mechanisms. "Wear control handbook". American Society of Mechanical Engineers. 1980.

[28] Qiu, X., Potapov, A., Song, M., and Nordell, L.. Prediction of wear of mill lifters using discrete elementmethod.. SAG Conference Proceedings. 2001.

[29] Lommen, S. and Schott, D. and Lodewijks, G.. {DEM} speedup: stiffness effects on behaviour of bulk material. Particuology. 12. 107–112. 2014.

[30] Brown, S.. Measures of shape: skewness and kurtosis. https://brownmath.com/stat/shape.htm. 2008–2017.

[31] Vargas, W. L. and McCarthy, J. J.. Heat conduction in granular materials. AIChE Journal. 47 (5). 1052–1059. 2001.

[32] Batchelor, G. K. and O'Brien, R. W.. Thermal or electrical conduction through a granular material. Proc. R. Soc. Lond. A.. 355. 313–333. 1977.

[33] Morris, A. B. and Pannala, S. and Ma, Z. and Hrenya, C. M.. Development of soft-sphere contact models for thermal heat conduction in granular flows. AIChE Journal. 62 (12). 4526–4535. 2016.

[34] Bierwisch, C. and Kraft, T. and Riedel, H. and Moseler, M.. Three-dimensional discrete element models for the granular statics and dynamics of powders in cavity filling. Journal of the Mechanics and Physics of Solids. 6257. 10–31. 2009.

[35] Radl, S. and Radeke, C. and Khinast, J. G. and Sundaresan, S.. Parcel-Based Approach for the Simulation of Gas-Particle Flows.. Proceedings of the 8th international Conference on CFD in the Oil and Gas, Metallurgical and Process Industries.. 124–134. 2011.

[36] Ottosen, N. S. and Ristimaa, M.. The mechanics of constitutive modeling. Elsevier. 2005.

[37] Potapov, A. V. and Campbell, C. S.. Computer simulation of impact-induced particle breakage. Powder Technology. 81. 207–216. 1994.

[38] Potapov, A. V. and Campbell, C. S. and Hopkins, M. A.. A two-dimensional dynamic simulation of solid fracture. {Part I}: description of the model. International Journal of Modern Physics. 6 (3). 371–398. 1995.

[39] Jeffrey, A. and Dai, H. H.. Handbook of mathematical formulas and integrals. Academic Press. 2008.

[40] Schmidt, M.. Modellierung der Zerkleinerung in Profilwalzenbrechern. Technischen Universit��t Bergakademie Freiberg. 2011.

[41] Mikami, T. and Kamiya, H. and Horio, M.. Numerical simulation of cohesive powder behavior in a fluidized bed. Chemical Engineering Science. 53 (10). 1927–1940. 1997.

[42] Nase, S. T. and Vargas, W. L. and Abatan, A. A. and McCarthy, J. J.. Discrete characterization tools for cohesive granular material. Powder Technology. 116. 214–223. 2001.