/COM,ANSYS MEDIA REL. 2024R2 (05/10/2024) REF. VERIF. MANUAL: REL. 2024R2
/VERIFY,VM213
/TITLE,VM213, DIFFERENTIAL INDUCTANCE OF A TRANSFORMER
/NOPR
/COM
/COM REFERENCE:
/COM M.GYIMESI,D.OSTERGAARD,"INDUCTANCE COMPUTATION BY
/COM INCREMENTAL FINITE ELEMENT ANALYSIS", IEEE
/COM TRANSACTION ON MAGNETICS, VOL.35, NO.3 (1998),
/COM PP.1119-1122
/COM
/COM
/COM ^ y axis : symmetry plane
/COM : : core center
/COM :<.x1.>.<.x2.>.<.x..>:
/COM : : : :
/COM --------------------------:
/COM ! : nonlin core:
/COM ! yoke ideal iron : H = Hs (B/Bs)^2; BS=2T;HS=100A/m
/COM ! :
/COM ! ------------- :....
/COM !leg ! : !nonlin: ^
/COM !ideal!coil1 :coil2 ! iron : y
/COM !iron ! : ! core : :
/COM ! ------------- :..v..> x axis
/COM ! :
/COM ! yoke ideal iron :
/COM ! :
/COM --------------------------:
/COM
/COM target
/COM
/COM nominal
/COM magnetic field in the core : Hn = (N1 I1 + N2 I2) / y = 25
/COM flux density in the core : Bn = Bs sqrt(H/Hs) = 1
/COM tangent reluctivity : dH/dB = 2 Hs/Bs B/Bs = 50
/COM magnetic energy in the core : nlene = Hs/Bs^2 Bn^3/3 2xyz = 0.0166
/COM magnetic coenergy in the core : nlcene = Bn Hn 2xyz - nlene = 0.0333
/COM
/COM inductances
/COM self coil 1 : L11 ~ 2 N1^2 x z / (y nui) = 0.4
/COM self coil 2 : L22 ~ 2 N2^2 x z / (y nui) = 1.6
/COM mutual between coil 1 and 2 : L12 ~ 2 N1 N2 x z / (y nui) = 0.8
/COM
/COM flux linkages
/COM coil 1 : psi1 = 2 N1 x z B0 = 0.2
/COM coil 2 : psi2 = 2 N2 x z B0 = 0.4
! GEOMETRY DATA
N=1 ! MESHING PARAMETER
X1=0.1 ! WIDTH (X SIZE) OF COIL 1
X2=0.1 ! WIDTH (X SIZE) OF COIL 2
X=0.1 ! WIDTH (X SIZE) OF CORE
Y=0.1 ! HIGHT OF CORE, Y SIZE OF WINDOW
Z=0.1 ! THICKNESS OF IRON IN Z DIRECTION
NUI=50 ! ABSOLUTE RELUCTIVITY OF IRON
N1=10 ! NUMBER OF TURNS IN COIL1
N2=20 ! NUMBER OF TURNS IN COIL2
! EXCITATION DATA
SYMFAC=2 ! SYMMETRIC FACTOR FOR INDUCTANCE COMPUTATION
NC=2 ! NUMBER OF COILS
*DIM,CUR,ARRAY,NC ! NOMINAL CURRENTS OF COILS
CUR(1)=0.2 ! NOMINAL CURRENT OF 1ST COIL
CUR(2)=0.025 ! TINY NOMINAL CURRENT OF 2ND COIL
! DERIVED AUXILIARY PARAMETERS
MU0=3.1415926*4.0E-7
MURI=1/NUI/MU0 ! RELATIVE PERMEABILITY OF IRON
X3=X1+X2 ! X COORDINATE OF THE RIGHT OF COIL2
X4=X3+X ! X COORDINATE OF MIDDLE OF CORE (SYMMETRY PLANE)
JS1=CUR(1)*N1/(X1*Y) ! NOMINAL CURRENT DENSITY OF COIL1
JS2=CUR(2)*N2/(X2*Y) ! NOMINAL CURRENT DENSITY OF COIL2
/PREP7
SMRT,OFF
ET,1,SOLID236
MP,MURX,1,1 ! AIR/COIL
BS=2 ! SATURATION FLUX DENSITY
HS=100 ! SATURATION MAGNETIC FIELD
TB,BH,2 ! CORE: H = Hs (B/Bs)^2; Bs=2T;Hs=100A/m
TBPT,, 1, 0.2
TBPT,, 4, 0.4
TBPT,, 9, 0.6
TBPT,, 16, 0.8
TBPT,, 25, 1.0
TBPT,, 36, 1.2
TBPT,, 49, 1.4
TBPT,, 64, 1.6
TBPT,, 81, 1.8
TBPT,,100, 2.0
TBPT,,121, 2.2
TBPT,,144, 2.4
TBPT,,169, 2.6
TBPT,,176, 2.8
TBPT,,225, 3.0
TBPT,,256, 3.2
TBPT,,289, 3.4
TBPT,,324, 3.6
TBPT,,361, 3.8
TBPT,,400, 4.0
TBPLOT,BH,2 !PLOT BH CURVE
BLOCK, 0,X1,0,Y,0,Z ! COIL1
BLOCK,X1,X3,0,Y,0,Z ! COIL2
BLOCK,X3,X4,0,Y,0,Z ! CORE
VGLUE,ALL
VSEL,S,LOC,X,X1/2
VATT,1,1,1 ! COIL 1 VOLUME ATTRIBUTE
VSEL,S,LOC,X,X1+X2/2
VATT,1,2,1 ! COIL 2 VOLUME ATTRIBUTE
VSEL,S,LOC,X,X3+X/2
VATT,2,3,1 ! IRON VOLUME ATTRIBUTE
VSEL,ALL
ESIZE,,N
VMESH,ALL
NSEL,S,LOC,X,X4 ! FLUX PARALLEL DIRICHLET AT SYMMETRY PLAIN, X=X4,Z=0,Z=Z
NSEL,A,LOC,Z,0
NSEL,A,LOC,Z,Z
D,ALL,AZ,0
! ! HOMOGENEOUS NEUMANN FLUX NORMAL AT YOKE, X=0, Y=0, Y=Y
NSEL,ALL
ESEL,S,ELEM,,1 ! COIL 1 COMPONENT
BFE,ALL,JS,,,,JS1 ! CURRENT DENSITY IN COIL 1
ESEL,S,ELEM,,2 ! COIL 2 COMPONENT
BFE,ALL,JS,,,,JS2 ! UNITE CURRENT DENSITY IN COIL 2
ALLSEL
FINISH
/COM
/COM OBTAIN OPERATING SOLUTION
/COM
/SOLUTION
ANTYPE,STATIC
CNVTOL,CSG,1,1.0E-3
SOLVE
FINISH
/POST1
SET,LAST
/COM
/COM COMPUTE STORED ENERGY AND CO-ENERGY
/COM
ETABLE,_mene,MENE
ETABLE,_coen,COEN
ETABLE,_aene,AENE
SSUM
*get,STORENG,ssum,,item,_mene
*get,STORCOE,ssum,,item,_coen
*get,STORAEN,ssum,,item,_aene
/com,
/com, Energy = %STORENG*SYMFAC%
/com, Co-energy = %STORCOE*SYMFAC%
/com, Apparent energy = %STORAEN*SYMFAC%
/com
FINISH
*DIM,LABENG,CHAR,2
*DIM,VALENG,,2,2
*DIM,RESENG,,2,1
LABENG(1)='ENERGY','CO-ENERGY'
*VFILL,VALENG(1,1),DATA,0.0166,0.0333
*VFILL,RESENG(1,1),DATA,2*STORENG,2*STORCOE
*VFILL,VALENG(1,2),DATA,ABS(2*STORENG/0.0166),ABS(2*STORCOE/0.0333)
PARSAVE,all
/COM,
/COM, *** COMPUTE INDUCTANCE AND FLUX USING THE LINEAR PERTURBATION PROCEDURE
/COM,
ALLSEL
/SOLUTION
ANTYPE,STATIC,RESTART,,,PERTURB
PERTURB,STATIC,,CURRENT,ALLKEEP
SOLVE,ELFORM
! Apply CUR(1) only to determine L11
BFE,1,JS,,,,JS1
BFEDELE,2,JS
SOLVE
! Apply CUR(2) only to determine L12
BFEDELE,1,JS
BFE,2,JS,,,,JS2
SOLVE
! Apply CUR(1) and CUR(2) together to determine L12
BFE,1,JS,,,,JS1
BFE,2,JS,,,,JS2
SOLVE
FINISH
PARRES
! define arrays for inductance, flux linkage, and energy
*DIM,INDI,ARRAY,2,2 ! incremental inductance matrix
*DIM,IENE,ARRAY,2,2 ! incremental energy
*DIM,COEN,ARRAY,2,2 ! coenergy energy
*DIM,FLX,ARRAY,2 ! flux
/POST1
FILE,,rstp
SET,1,LAST
ETABLE,_iene,IENE
ETABLE,_coen,COEN
SSUM
*GET,IENE(1,1),ssum,,item,_iene
*GET,COEN(1,1),ssum,,item,_coen
SET,2,LAST
ETABLE,_iene,IENE
ETABLE,_coen,COEN
SSUM
*GET,IENE(2,2),ssum,,item,_iene
*GET,COEN(2,2),ssum,,item,_coen
SET,3,LAST
ETABLE,_iene,IENE
ETABLE,_coen,COEN
SSUM
*GET,IENE(1,2),ssum,,item,_iene
*GET,COEN(1,2),ssum,,item,_coen
FINISH
! COMPUTE INCREMENTAL INDUCTANCE
INDI(1,1)=2*IENE(1,1)/CUR(1)**2*SYMFAC
INDI(2,2)=2*IENE(2,2)/CUR(2)**2*SYMFAC
INDI(1,2)=(IENE(1,2)-IENE(1,1)-IENE(2,2))/(CUR(1)*CUR(2))*SYMFAC
INDI(2,1)=INDI(1,2)
! COMPUTE FLUX
FLX(1)=COEN(1,1)/CUR(1)*SYMFAC
FLX(2)=COEN(2,2)/CUR(2)*SYMFAC
!SET UP AND FILL VM RATIO TABLE
RAT_1 = ABS(INDI(1,1)/0.40)
RAT_2 = ABS(INDI(2,2)/1.60)
RAT_3 = ABS(INDI(1,2)/0.80)
*DIM,LABEL,CHAR,3
*DIM,VALUE,,3,2
*DIM,RESULTS,,3,1
LABEL(1) = 'COIL1','COIL2','MUTUAL'
*VFILL,VALUE(1,1),DATA,0.40,1.60,0.80
!
!FILL RESULTS VECTOR WITH INDUCTANCE MATRIX VALUES
!
*VFILL,RESULTS(1,1),DATA,INDI(1,1),INDI(2,2),INDI(1,2)
*VFILL,VALUE(1,2),DATA,RAT_1,RAT_2,RAT_3
*DIM,LABEL1,CHAR,2
*DIM,VALUE1,,2,2
*DIM,RESULT1,,2,1
LABEL1(1)= 'COIL1','COIL2'
*VFILL,VALUE1(1,1),DATA,0.2,0.4
!
! FILL RESULTS VECTOR WITH FLUX ARRAY VALUES
!
*VFILL,RESULT1(1,1),DATA,FLX(1),FLX(2)
*VFILL,VALUE1(1,2),DATA,ABS(FLX(1)/0.2),ABS(FLX(2)/0.4)
/COM
/OUT,vm213,vrt
/COM,------------------- VM213 RESULTS COMPARISON ---------------------
/COM
/COM, ENERGY (J) | TARGET | Mechanical APDL | RATIO
/COM
*VWRITE,LABENG(1),VALENG(1,1),RESENG(1,1),VALENG(1,2)
(1X,A10,' ',F10.4,' ',F10.4,' ',1F13.3)
/COM
/COM, FLUX (Weber) | TARGET | Mechanical APDL | RATIO
/COM,
*VWRITE,LABEL1(1),VALUE1(1,1),RESULT1(1,1),VALUE1(1,2)
(1X,A10,' ',F10.4,' ',F10.4,' ',1F13.3)
/COM,
/COM, INDUCTANCE (H) | TARGET | Mechanical APDL | RATIO
/COM,
*VWRITE,LABEL(1),VALUE(1,1),RESULTS(1,1),VALUE(1,2)
(1X,A10,' ',F10.4,' ',F10.4,' ',1F13.3)
/COM,-------------------------------------------------------------------
/OUT,
*LIST,vm213,vrt
FINISH