VM213 Input Listing


/COM,ANSYS MEDIA REL. 2024R2 (05/10/2024) REF. VERIF. MANUAL: REL. 2024R2
/VERIFY,VM213
/TITLE,VM213, DIFFERENTIAL INDUCTANCE OF A TRANSFORMER
/NOPR
/COM
/COM  REFERENCE:
/COM  M.GYIMESI,D.OSTERGAARD,"INDUCTANCE COMPUTATION BY
/COM  INCREMENTAL FINITE ELEMENT ANALYSIS", IEEE
/COM  TRANSACTION ON MAGNETICS, VOL.35, NO.3 (1998),
/COM  PP.1119-1122
/COM
/COM
/COM       ^ y axis             : symmetry plane
/COM       :                    : core center
/COM       :<.x1.>.<.x2.>.<.x..>:
/COM       :      :      :      :
/COM  --------------------------:
/COM !                          : nonlin core:
/COM !     yoke ideal iron      : H = Hs (B/Bs)^2; BS=2T;HS=100A/m
/COM !                          :
/COM !      -------------       :....
/COM !leg  !      :      !nonlin:  ^
/COM !ideal!coil1 :coil2 ! iron :  y
/COM !iron !      :      ! core :  :
/COM !      -------------       :..v..> x axis
/COM !                          :
/COM !     yoke ideal iron      :
/COM !                          :
/COM  --------------------------:
/COM
/COM target
/COM
/COM nominal
/COM    magnetic field in the core    : Hn  = (N1 I1 + N2 I2) / y    = 25
/COM    flux density   in the core    : Bn  = Bs sqrt(H/Hs)          = 1
/COM    tangent reluctivity           : dH/dB = 2 Hs/Bs B/Bs         = 50
/COM    magnetic energy in the core   : nlene = Hs/Bs^2 Bn^3/3 2xyz  = 0.0166
/COM    magnetic coenergy in the core : nlcene = Bn Hn 2xyz - nlene  = 0.0333
/COM
/COM inductances
/COM    self coil 1                   : L11 ~ 2 N1^2  x z / (y nui)  = 0.4
/COM    self coil 2                   : L22 ~ 2 N2^2  x z / (y nui)  = 1.6
/COM    mutual between coil 1 and 2   : L12 ~ 2 N1 N2 x z / (y nui)  = 0.8
/COM
/COM flux linkages
/COM    coil 1                        : psi1 = 2 N1 x z B0           = 0.2
/COM    coil 2                        : psi2 = 2 N2 x z B0           = 0.4



!       GEOMETRY DATA

N=1                     ! MESHING PARAMETER
X1=0.1                  ! WIDTH (X SIZE) OF COIL 1
X2=0.1                  ! WIDTH (X SIZE) OF COIL 2
X=0.1                   ! WIDTH (X SIZE) OF CORE
Y=0.1                   ! HIGHT OF CORE, Y SIZE OF WINDOW
Z=0.1                   ! THICKNESS OF IRON IN Z DIRECTION
NUI=50                  ! ABSOLUTE RELUCTIVITY OF IRON
N1=10                   ! NUMBER OF TURNS IN COIL1
N2=20                   ! NUMBER OF TURNS IN COIL2

!      EXCITATION DATA 

SYMFAC=2                ! SYMMETRIC FACTOR FOR INDUCTANCE COMPUTATION
NC=2                    ! NUMBER OF COILS
*DIM,CUR,ARRAY,NC       ! NOMINAL CURRENTS OF COILS
CUR(1)=0.2              ! NOMINAL CURRENT OF 1ST COIL
CUR(2)=0.025            ! TINY NOMINAL CURRENT OF 2ND COIL

!      DERIVED AUXILIARY PARAMETERS

MU0=3.1415926*4.0E-7
MURI=1/NUI/MU0          ! RELATIVE PERMEABILITY OF IRON
X3=X1+X2                ! X COORDINATE OF THE RIGHT OF COIL2
X4=X3+X                 ! X COORDINATE OF MIDDLE OF CORE (SYMMETRY PLANE)
JS1=CUR(1)*N1/(X1*Y)    ! NOMINAL CURRENT DENSITY OF COIL1
JS2=CUR(2)*N2/(X2*Y)    ! NOMINAL CURRENT DENSITY OF COIL2


/PREP7
SMRT,OFF
ET,1,SOLID236

MP,MURX,1,1             ! AIR/COIL
BS=2                    ! SATURATION FLUX DENSITY
HS=100                  ! SATURATION MAGNETIC FIELD
TB,BH,2                 ! CORE: H = Hs (B/Bs)^2; Bs=2T;Hs=100A/m
TBPT,,  1, 0.2
TBPT,,  4, 0.4
TBPT,,  9, 0.6
TBPT,, 16, 0.8
TBPT,, 25, 1.0
TBPT,, 36, 1.2
TBPT,, 49, 1.4
TBPT,, 64, 1.6
TBPT,, 81, 1.8
TBPT,,100, 2.0
TBPT,,121, 2.2
TBPT,,144, 2.4
TBPT,,169, 2.6
TBPT,,176, 2.8
TBPT,,225, 3.0
TBPT,,256, 3.2
TBPT,,289, 3.4
TBPT,,324, 3.6
TBPT,,361, 3.8
TBPT,,400, 4.0
TBPLOT,BH,2	 	!PLOT BH CURVE


BLOCK, 0,X1,0,Y,0,Z     ! COIL1
BLOCK,X1,X3,0,Y,0,Z     ! COIL2
BLOCK,X3,X4,0,Y,0,Z     ! CORE

VGLUE,ALL

VSEL,S,LOC,X,X1/2
VATT,1,1,1               ! COIL 1 VOLUME ATTRIBUTE
VSEL,S,LOC,X,X1+X2/2
VATT,1,2,1               ! COIL 2 VOLUME ATTRIBUTE
VSEL,S,LOC,X,X3+X/2
VATT,2,3,1               ! IRON VOLUME ATTRIBUTE
VSEL,ALL

ESIZE,,N
VMESH,ALL

NSEL,S,LOC,X,X4         ! FLUX PARALLEL DIRICHLET AT SYMMETRY PLAIN, X=X4,Z=0,Z=Z
NSEL,A,LOC,Z,0
NSEL,A,LOC,Z,Z
D,ALL,AZ,0
!                       ! HOMOGENEOUS NEUMANN FLUX NORMAL AT YOKE, X=0, Y=0, Y=Y
NSEL,ALL

ESEL,S,ELEM,,1          ! COIL 1 COMPONENT
BFE,ALL,JS,,,,JS1       ! CURRENT DENSITY IN COIL 1

ESEL,S,ELEM,,2          ! COIL 2 COMPONENT
BFE,ALL,JS,,,,JS2       ! UNITE CURRENT DENSITY IN COIL 2

ALLSEL
FINISH

/COM
/COM OBTAIN OPERATING SOLUTION
/COM
/SOLUTION
ANTYPE,STATIC
CNVTOL,CSG,1,1.0E-3
SOLVE
FINISH

/POST1
SET,LAST
/COM
/COM COMPUTE STORED ENERGY AND CO-ENERGY
/COM
ETABLE,_mene,MENE
ETABLE,_coen,COEN
ETABLE,_aene,AENE

SSUM
*get,STORENG,ssum,,item,_mene
*get,STORCOE,ssum,,item,_coen
*get,STORAEN,ssum,,item,_aene
/com,
/com, Energy = %STORENG*SYMFAC%
/com, Co-energy = %STORCOE*SYMFAC%
/com, Apparent energy = %STORAEN*SYMFAC%
/com
FINISH

*DIM,LABENG,CHAR,2
*DIM,VALENG,,2,2
*DIM,RESENG,,2,1
LABENG(1)='ENERGY','CO-ENERGY'
*VFILL,VALENG(1,1),DATA,0.0166,0.0333
*VFILL,RESENG(1,1),DATA,2*STORENG,2*STORCOE
*VFILL,VALENG(1,2),DATA,ABS(2*STORENG/0.0166),ABS(2*STORCOE/0.0333)
PARSAVE,all
/COM,
/COM, ***  COMPUTE INDUCTANCE AND FLUX USING THE LINEAR PERTURBATION PROCEDURE
/COM,
ALLSEL

/SOLUTION
ANTYPE,STATIC,RESTART,,,PERTURB
PERTURB,STATIC,,CURRENT,ALLKEEP
SOLVE,ELFORM

! Apply CUR(1) only to determine L11
BFE,1,JS,,,,JS1
BFEDELE,2,JS
SOLVE

! Apply CUR(2) only to determine L12
BFEDELE,1,JS
BFE,2,JS,,,,JS2
SOLVE

! Apply CUR(1) and CUR(2) together to determine L12
BFE,1,JS,,,,JS1
BFE,2,JS,,,,JS2
SOLVE
FINISH

PARRES
! define arrays for inductance, flux linkage, and energy
*DIM,INDI,ARRAY,2,2  ! incremental inductance matrix

*DIM,IENE,ARRAY,2,2  ! incremental energy
*DIM,COEN,ARRAY,2,2  ! coenergy energy

*DIM,FLX,ARRAY,2     ! flux

/POST1
FILE,,rstp
SET,1,LAST
ETABLE,_iene,IENE
ETABLE,_coen,COEN
SSUM
*GET,IENE(1,1),ssum,,item,_iene
*GET,COEN(1,1),ssum,,item,_coen

SET,2,LAST
ETABLE,_iene,IENE
ETABLE,_coen,COEN
SSUM
*GET,IENE(2,2),ssum,,item,_iene
*GET,COEN(2,2),ssum,,item,_coen

SET,3,LAST
ETABLE,_iene,IENE
ETABLE,_coen,COEN
SSUM
*GET,IENE(1,2),ssum,,item,_iene
*GET,COEN(1,2),ssum,,item,_coen

FINISH

! COMPUTE INCREMENTAL INDUCTANCE 
INDI(1,1)=2*IENE(1,1)/CUR(1)**2*SYMFAC
INDI(2,2)=2*IENE(2,2)/CUR(2)**2*SYMFAC
INDI(1,2)=(IENE(1,2)-IENE(1,1)-IENE(2,2))/(CUR(1)*CUR(2))*SYMFAC
INDI(2,1)=INDI(1,2)

! COMPUTE FLUX
FLX(1)=COEN(1,1)/CUR(1)*SYMFAC
FLX(2)=COEN(2,2)/CUR(2)*SYMFAC

!SET UP AND FILL VM RATIO TABLE
RAT_1 = ABS(INDI(1,1)/0.40)
RAT_2 = ABS(INDI(2,2)/1.60)
RAT_3 = ABS(INDI(1,2)/0.80)
*DIM,LABEL,CHAR,3
*DIM,VALUE,,3,2
*DIM,RESULTS,,3,1
LABEL(1) = 'COIL1','COIL2','MUTUAL'
*VFILL,VALUE(1,1),DATA,0.40,1.60,0.80
!
!FILL RESULTS VECTOR WITH INDUCTANCE MATRIX VALUES
!
*VFILL,RESULTS(1,1),DATA,INDI(1,1),INDI(2,2),INDI(1,2)
*VFILL,VALUE(1,2),DATA,RAT_1,RAT_2,RAT_3

*DIM,LABEL1,CHAR,2
*DIM,VALUE1,,2,2
*DIM,RESULT1,,2,1
LABEL1(1)= 'COIL1','COIL2'
*VFILL,VALUE1(1,1),DATA,0.2,0.4
!
! FILL RESULTS VECTOR WITH FLUX ARRAY VALUES
!
*VFILL,RESULT1(1,1),DATA,FLX(1),FLX(2)
*VFILL,VALUE1(1,2),DATA,ABS(FLX(1)/0.2),ABS(FLX(2)/0.4)

/COM
/OUT,vm213,vrt
/COM,------------------- VM213  RESULTS COMPARISON ---------------------
/COM
/COM,   ENERGY (J)   |   TARGET   |  Mechanical APDL  |   RATIO
/COM 
*VWRITE,LABENG(1),VALENG(1,1),RESENG(1,1),VALENG(1,2)
(1X,A10,'     ',F10.4,'    ',F10.4,'     ',1F13.3)
/COM
/COM,  FLUX (Weber)  |   TARGET   |  Mechanical APDL  |   RATIO
/COM,
*VWRITE,LABEL1(1),VALUE1(1,1),RESULT1(1,1),VALUE1(1,2)
(1X,A10,'     ',F10.4,'    ',F10.4,'     ',1F13.3)
/COM,
/COM, INDUCTANCE (H) |   TARGET   |  Mechanical APDL  |   RATIO
/COM,
*VWRITE,LABEL(1),VALUE(1,1),RESULTS(1,1),VALUE(1,2)
(1X,A10,'     ',F10.4,'    ',F10.4,'     ',1F13.3)
/COM,-------------------------------------------------------------------
/OUT,
*LIST,vm213,vrt
FINISH