7.9. Example: Calculation of a Plain Cylindrical Journal Bearing Characteristics

The model is a plain cylindrical journal bearing supporting a shaft rotating at 100000 rad/s. The stiffness and damping characteristics are calculated at the adimensional equilibrium position XX = 0.5, YY = -0.7, and XXdot = YYdot = -0.05.

7.9.1. Problem Specifications

The bearing properties are as follows:

Clearance: 1 x 10-4 m
Length: 0.02 m
Radius: 0.01 m
Viscosity: 0.07 Pa·s

A perturbation increment of 1 x 10-5 is used.

7.9.2. Input for the Analysis

! ** Bearing parameters 
mass    = 1      ! unused
xclear  = 1e-4
length  = 0.02
radius  = 0.01
mu      = 0.07
omegaj  = 1e+5
pertInc = 1e-5

! ** Equilibrium position (adimensional)
XX    = 0.5
YY    = -0.7
XXdot = -0.05
YYdot = -0.05

u1 = XX*xclear
u2 = YY*xclear
veloc1 = XXdot*xclear*omegaj
veloc2 = YYdot*xclear*omegaj 

/prep7

! ** Nodes
n, 1, -1
n, 2,  0

! ** Elements

et, 1, 21,,, 2        ! 3D no rotary inertias
r, 1, mass

et, 2, 214
keyopt,2,1, 2         ! Reynolds integration
r, 2, xclear, length, radius, veloc1, veloc2, pertInc

! ** Material
mp,visc,2, mu

! ** Mesh
type,1
real,1
e, 2

type,2
real,2
mat,2
e, 1, 2

! ** Boundary conditions
d, all, all, 0.0
ddel, 2, UX
ddel, 2, UY
finish

! ** Static analysis with specified displacements
/solu
antype, static
omega,,, omegaj
d,2,ux, u1
d,2,uy, u2
outres,all,all
solve
finish

/post1
set,last

esel,,elem,,2

etable, fx, smisc,1
etable, fy, smisc,2

etable, theta1, nmisc,1
etable, theta2, nmisc,2
etable, mofp,   nmisc,3
etable, thetap, nmisc,4
etable, hmin,   nmisc,5
etable, thetah, nmisc,6

pretab

etable, kxx, nmisc,7
etable, kyy, nmisc,8
etable, kxy, nmisc,9
etable, kyx, nmisc,10

pretab, kxx, kyy, kxy, kyx

etable, cxx, nmisc,11
etable, cyy, nmisc,12
etable, cxy, nmisc,13
etable, cyx, nmisc,14

pretab, cxx, cyy, cxy, cyx
finish

7.9.3. Output for the Analysis

Figure 7.15: Bearing Element Results

Bearing Element Results