This example problem demonstrates the use of FLUID220 to predict the resonant frequencies in a pipe filled with the ideal gas.
The pipe dimensions are 0.02 x 0.05 x 1m3. The material properties are defined at the reference temperature TREF = 288.15 K.
The temperatures are set to 2000 K and 400 K at z = 0 and z = 1 m, respectively.
The temperature varies linearly from one end to the other.
A constant static pressure is used.
/batch,list /title,Ideal gas with linear temperature variation /nopr /prep7 ! define element and material et,1,220,,1 rho=1.225 ! density c=340 ! sonic speed p0=101325 ! constant static pressure mp,sonc,1,c mp,dens,1,rho ! define the geometry a=0.02 b=0.05 c=1 block,0,a,0,b,0,c ! create mesh h=0.01 mshape,0,3d esize,h type,1 mat,1 vmesh,all alls tref,288.15 ! reference T = 288.15 K ! linear temperature variation: T=2000 (z=0); T=400 (z=c) *get,ndmax,NODE,0,COUNT node=0 *do,i,1,ndmax node=ndnext(node) zi=nz(node) con= (-1600/c)*zi+2000 nsel,s,loc,z,zi bf,all,temp,con nsel,all *enddo alls nsel,all ! constant static pressure p0=101325 Pa bf,all,spre,p0 ! define the boundary condition nsel,s,loc,z,c d,all,pres,0 alls fini ! perform a solution /solu antype,modal modopt,lanb,6,50,2000 ! six modes between 50 and 2000 Hz mxpand,6 solve fini /post1 *dim,result,array,6 *do,i,1,6 set,1,i *get,freq,active,,set,freq ! get resonant frequency result(i) = freq *enddo /com, /com, ***** Resonant Frequencies (Hz) ***** *vwrite,result(1) (18X,F15.4) finish