This example problem demonstrates the use of FLUID30 to predict the acoustic standing wave pattern of a typical enclosure representing a room.
A sound-absorption material is located at the bottom surface of the enclosure and a vibrating structure with a cylindrical surface is located at the top right hand corner of the enclosure.
The problem determines the acoustic pressure wave pattern when the structure vibrates at an excitation frequency of 80 Hz.
/batch,list /com, Harmonic Analysis - Room Acoustics /nopr /PREP7 /TITLE,Room Acoustic Analysis ANTYPE,HARM ET,1,30 ! Acoustic elements in contact with walls and vibrating surface ET,2,30,,1 ! Acoustic elements in interior (not in contact with walls) ! Material properties RHO=1.2041 ! density of air (kg/m**3) C0=343.24 ! speed of sound in air (m/sec) Z0=RHO*C0 ! Sound impedance MP,DENS,1,RHO MP,SONC,1,C0 ! Set parameters for mesh generation XDIV=29 ! Number of divisions along x-axis YDIV=19 ! Number of divisions along y-axis ZDIV=1 ! Number of divisions along z-axis CDIV=2 ! Number of divisions along radius ! Dimensions of the room LEN=8.2296 HGT=6.0960 RAD=0.27432 ZL=-0.3048 ! Mesh generation K,1 K,2,LEN K,3,LEN,HGT K,4,,HGT K,5,,,ZL K,6,LEN,,ZL K,7,LEN,HGT,ZL K,8,,HGT,ZL L,1,5,1 L,2,6,1 L,3,7,1 L,4,8,1 CIRC,3,RAD,7,2,90,2 ADRAG,5,6,,,,, 3 PIO4=ATAN(1) LENC=COS(PIO4) LENC=LENC*RAD HGTC=HGT-LENC LENC=LEN-LENC K,15,,HGTC K,16,,HGTC,ZL K,17,LENC K,18,LENC,,ZL L,1 ,17,XDIV L,10,15,XDIV L,11,4 ,XDIV L,17,10,YDIV L,15, 1,YDIV L,2 ,9 ,YDIV L,5 ,18,XDIV L,13,16,XDIV L,14,8 ,XDIV L,18,13,YDIV L,16,5 ,YDIV L,6 ,12,YDIV ESIZE,,CDIV V,1 ,17,10,15, 5,18,13,16 V,15,10,11,4 ,16,13,14,8 V,17,2 ,9 ,10,18,6 ,12,13 VMESH,ALL ALLS ! Coupled elements NSEL,S,LOC,X,0.0 NSEL,A,LOC,Y,0.0 NSEL,A,LOC,X,LEN NSEL,A,LOC,Y,HGT LOCAL,11,1,LEN,HGT NSEL,A,LOC,X,RAD ESLN ESEL,INVE TYPE,2 EMODIF,ALL ! Interior elements are specified as Type=2 & material=3 ALLS ! Fluid-Structure Interface (FSI) NSEL,S,LOC,X,RAD ! Select interface (FSI) surface nodes ESLN ! Select elements attached to interface surface SF,ALL,FSI ! Specify vibrating surface as Fluid-structure interface ! Boundary conditions CSYS,0 NSEL,S,LOC,X,0.0 NSEL,A,LOC,Y,0.0 NSEL,A,LOC,X,LEN NSEL,A,LOC,Y,HGT D,ALL,UX,,,,,UY,UZ ! Constrain all displacements to zero at the walls CSYS,11 NSEL,S,LOC,X,RAD ! Select interface (FSI) surface nodes NROTAT,ALL D,ALL,UX,.003048 ! Radial vibration amplitude of Vibrating surface D,ALL,UY,,,,,UZ ALLS ! Impedance surface (IMPD) CSYS,0 NSEL,S,LOC,X,0.0 NSEL,A,LOC,X,LEN NSEL,A,LOC,Y,0.0 NSEL,A,LOC,Y,HGT SF,ALL,IMPD,Z0/0.04 ! Wall impedance HX=LENC/XDIV NSEL,S,LOC,Y,0.0 NSEL,R,LOC,X,13*HX,17*HX SF,ALL,IMPD,Z0/0.7 ! Window impedance ALLS FINISH /SOLU ! Excitation Frequency for Harmonic Analysis HARF,80,80 ! Frequency of excitation = 80 Hz SOLVE FINISH ! Plot the Standing Wave Pattern (f = 80 Hz) /POST1 /SHOW,ENCL1,GRPH,1 SET,1,1 ! plot the real part of pressure response EPLOT /EDGE,1 /TITLE,-ROOM ACOUSTICS- * REAL PART OF PRESSURE PLNS,PRES SET,1,1,,1 ! plot the imag. part of pressure response /TITLE,-ROOM ACOUSTICS- * IMAG. PART OF PRESSURE PLNS,PRES FINISH