13.3. Example: Acoustic Harmonic Response in a Room

This example problem demonstrates the use of FLUID30 to predict the acoustic standing wave pattern of a typical enclosure representing a room.

A sound-absorption material is located at the bottom surface of the enclosure and a vibrating structure with a cylindrical surface is located at the top right hand corner of the enclosure.

The problem determines the acoustic pressure wave pattern when the structure vibrates at an excitation frequency of 80 Hz.

/batch,list
/com, Harmonic Analysis - Room Acoustics
/nopr
/PREP7
/TITLE,Room Acoustic Analysis
ANTYPE,HARM
ET,1,30                ! Acoustic elements in contact with walls and vibrating surface
ET,2,30,,1             ! Acoustic elements in interior (not in contact with walls)

                       ! Material properties
RHO=1.2041             ! density of air (kg/m**3)
C0=343.24              ! speed of sound in air (m/sec)
Z0=RHO*C0              ! Sound impedance
MP,DENS,1,RHO   
MP,SONC,1,C0    
                       ! Set parameters for mesh generation
XDIV=29                ! Number of divisions along x-axis
YDIV=19                ! Number of divisions along y-axis
ZDIV=1                 ! Number of divisions along z-axis
CDIV=2                 ! Number of divisions along radius
                       ! Dimensions of the room
LEN=8.2296
HGT=6.0960
RAD=0.27432
ZL=-0.3048
                       ! Mesh generation
K,1
K,2,LEN
K,3,LEN,HGT
K,4,,HGT
K,5,,,ZL
K,6,LEN,,ZL
K,7,LEN,HGT,ZL
K,8,,HGT,ZL
L,1,5,1
L,2,6,1
L,3,7,1
L,4,8,1
CIRC,3,RAD,7,2,90,2
ADRAG,5,6,,,,, 3
PIO4=ATAN(1)
LENC=COS(PIO4)
LENC=LENC*RAD
HGTC=HGT-LENC
LENC=LEN-LENC
K,15,,HGTC
K,16,,HGTC,ZL
K,17,LENC
K,18,LENC,,ZL
L,1 ,17,XDIV
L,10,15,XDIV
L,11,4 ,XDIV
L,17,10,YDIV
L,15, 1,YDIV
L,2 ,9 ,YDIV
L,5 ,18,XDIV
L,13,16,XDIV
L,14,8 ,XDIV
L,18,13,YDIV
L,16,5 ,YDIV
L,6 ,12,YDIV
ESIZE,,CDIV
V,1 ,17,10,15, 5,18,13,16
V,15,10,11,4 ,16,13,14,8
V,17,2 ,9 ,10,18,6 ,12,13
VMESH,ALL
ALLS

                       ! Coupled elements
NSEL,S,LOC,X,0.0
NSEL,A,LOC,Y,0.0
NSEL,A,LOC,X,LEN
NSEL,A,LOC,Y,HGT
LOCAL,11,1,LEN,HGT
NSEL,A,LOC,X,RAD
ESLN
ESEL,INVE
TYPE,2
EMODIF,ALL             ! Interior elements are specified as Type=2 & material=3
ALLS
                       ! Fluid-Structure Interface (FSI)
NSEL,S,LOC,X,RAD       ! Select interface (FSI) surface nodes
ESLN                   ! Select elements attached to interface surface
SF,ALL,FSI             ! Specify vibrating surface as Fluid-structure interface
                       ! Boundary conditions
CSYS,0
NSEL,S,LOC,X,0.0
NSEL,A,LOC,Y,0.0
NSEL,A,LOC,X,LEN
NSEL,A,LOC,Y,HGT
D,ALL,UX,,,,,UY,UZ     ! Constrain all displacements to zero at the walls
CSYS,11
NSEL,S,LOC,X,RAD       ! Select interface (FSI) surface nodes
NROTAT,ALL
D,ALL,UX,.003048       ! Radial vibration amplitude of Vibrating surface
D,ALL,UY,,,,,UZ
ALLS
                       ! Impedance surface (IMPD)
CSYS,0
NSEL,S,LOC,X,0.0
NSEL,A,LOC,X,LEN
NSEL,A,LOC,Y,0.0
NSEL,A,LOC,Y,HGT
SF,ALL,IMPD,Z0/0.04    ! Wall impedance
HX=LENC/XDIV
NSEL,S,LOC,Y,0.0
NSEL,R,LOC,X,13*HX,17*HX	
SF,ALL,IMPD,Z0/0.7     ! Window impedance
ALLS
FINISH
/SOLU
                       ! Excitation Frequency for Harmonic Analysis
HARF,80,80             ! Frequency of excitation = 80 Hz
SOLVE
FINISH
                       ! Plot the Standing Wave Pattern (f = 80 Hz)
/POST1
/SHOW,ENCL1,GRPH,1
SET,1,1                ! plot the real part of pressure response
EPLOT
/EDGE,1
/TITLE,-ROOM ACOUSTICS-  * REAL PART OF PRESSURE
PLNS,PRES
SET,1,1,,1             ! plot the imag. part of pressure response
/TITLE,-ROOM ACOUSTICS-  * IMAG. PART OF PRESSURE
PLNS,PRES
FINISH