This example problem demonstrates the use of FLUID221 to predict the acoustic scattering of a monopole incident wave of a rigid sphere (radius = 1 m).
The monopole spherical source is located at (2, 0, 0).
PML is used for truncation of the open space.
For more information, see Perfectly Matched Layers (PML) in the Mechanical APDL Theory Reference.
/batch,list /com, harmonic analysis – scattering from a rigid sphere /title,Scattering of a Rigid Sphere /nopr /prep7 pi=3.1415926535 ! material properties rho=1.21 ! air mass density c0=343 ! sound speed ra=1 ! radius of sphere ka=5 ! product of wavenumber and radius wave2=2.*pi*ra/ka ! wavelength h=wave2/10 ! mesh size freq=c0/wave2 ! frequency p0=1./(ka/ra) ! amplitude of incident pressure ! 10-node tetrahetral et,1,221,,1 ! normal tet et,2,221,,1,,1 ! pml tet mp,dens,1,rho ! define density mp,sonc,1,c0 ! define sound speed ! define the model xs=2. n=nint((xs-1.01*ra)/h) ! keep source outside of model npml=4 nb=2 na=n-npml-nb *if,na,le,0,then na=1 *endif a=ra+na*h b=a+nb*h c=b+npml*h sphere,0,ra,0,180 block,-a,a,0,a,-a,a block,-b,b,0,b,-b,b block,-c,c,0,c,-c,c vsbv,4,3,,delete,keep vsbv,3,2,,delete,keep vsbv,2,1,,delete,delete alls vglue,all ! meshing mshape,1,3d mat,1 type,1 vsel,all vsel,u,,,5 esize,h vmesh,all vsel,all type,2 mat,1 esize,h vsel,s,,,5 vmesh,all alls ! define equivalent source surface nsel,s,loc,x,-a,a nsel,r,loc,y,0,a nsel,r,loc,z,-a,a esln,s,1,all ! elements with selected nodes nsel,s,loc,x,a nsel,a,loc,x,-a nsel,a,loc,y,a nsel,a,loc,z,-a, nsel,a,loc,z,a sf,all,mxwf ! equivalent source surface alls ! define boundary condition on pml nsel,s,loc,x,c nsel,a,loc,x,-c nsel,a,loc,y,c nsel,a,loc,z,-c nsel,a,loc,z,c d,all,pres,0. ! pressure=0 on pml exterior allsel,all ! define external monopole incident wave awave,1,mono,pres,ext,p0,0,xs,0,0,rho,c0 fini ! perform solution /solu eqslv,sparse antype,harmic harfrq,freq solve fini ! pos-processing /post1 set,1,1 hfsym,0,,shb,, ! sound-hard x-z plane prnear,point,psum,0,-5,0,0 ! near pressure at (-5,0,0) prnear,point,psum,0,5,0,0 ! near pressure ar (5,0,0) prfar,pres,sumc,0,0,0,-90,90,18,5. ! far pressure at r=5 fini