This example problem demonstrates the use of FLUID220 to predict the sound pressure level at the closed end of a rigid walled waveguide.
The waveguide is terminated by a rigid wall at one end (z = Lz) and driven by a plane piston at another end (z = 0).
The square cross section of waveguide is Lx = Ly = 15 mm, and the length Lz is 170 mm.
The analytic value of the pressure at z = Lz is given by:
where:
For more information about viscous-thermal parameters, see Viscous-Thermal Materials in the Mechanical APDL Theory Reference
/batch,list /title,BLI model for waveguide with visco-thermal fluid /nopr /prep7 freq1 = 880 ! beginning frequency freq2 = 1100 ! ending frequency rho = 1.29 ! mass density c0 = 340 ! sound speed kx = 0.0241 ! thermal conductivity visc = 1.71e-5 ! dynamic viscosity cv = 654.1376 ! Cv heat coefficient cp = 915.7926 ! Cp heat coefficient bvis=0.6*visc ! bulk viscosity wavelen=c0/freq2 ! wavelength v0=2.45e-3 ! normal velocity ! viscous-thermal material tb,afdm,1,,,mat tbdata,1,rho,c0,visc,kx,cp,cv, tbdata,7,bvis ! create geometry d=0.005 l=0.170 block,-d/2,d/2,-d/2,d/2,0,l ! create mesh h=wavelen/20 et,1,220,,1 esize,h type,1 mat,1 vmesh,all ! define BLI boundary on rigid walls nsel,s,loc,z,l nsel,a,loc,x,-d/2 nsel,a,loc,x,d/2 nsel,a,loc,y,-d/2 nsel,a,loc,y,d/2 sf,all,bli ! define normal velocity on piston nsel,s,loc,z,0 sf,all,shld,v0 alls fini ! perform a solution /solu eqslv,sparse antype,harmic harfrq,freq1,freq2 nsub,11 solve fini ! post-processing /post26 nsel,s,loc,x,-d/2 nsel,r,loc,y,-d/2 nsel,r,loc,z,l nod=0 node=ndnext(nod) nsol,2,node,spl fini