Using Intrinsic Functions in Expressions

HFSS recognizes a set of intrinsic trigonometric and mathematical functions that can be used to define expressions. Intrinsic function names are reserved and may not be used as variable names.

Note:

If units are not specified, all trigonometric functions interpret their arguments as radians. Likewise, inverse trigonometric functions' return values are in given in radians. When the argument to a trigonometric expression is a variable, the units are assumed to be radians. To have values interpreted in degrees, supply the argument with the unit name deg.

The following intrinsic functions may be used to define expressions:


Function

Description

Syntax

abs

Absolute value (|x|)

abs(x)

sin

Sine

sin(x)

cos

Cosine

cos(x)

tan

Tangent

tan(x)

asin

Arcsine

asin(x)

acos

Arccosine

acos(x)

atan

Arctangent (in range
of -90 to 90 degrees)

atan(x)

atan2

Arctangent (in range
of -180 to 180 degrees)

atan2(y,x)

asinh

Hyperbolic Arcsine

asinh(x)

atanh

Hyperbolic Arctangent

atanh(x)

sinh

Hyperbolic Sine

sinh(x)

cosh

Hyperbolic Cosine

cosh(x)

tanh

Hyperbolic Tangent

tanh(x)

even

Returns 1 if integer part of the number is even; returns 0 otherwise.

even(x)

odd

Returns 1 if integer part of the number is odd; returns 0 otherwise.

odd(x)

sgn

Sign extraction

sgn(x)

exp

Exponential (ex)

exp(x)

pow

Raise to power (xy)

pow(x,y)

if

If

if(cond_exp,true_exp,false_exp)

pwl

Piecewise Linear. (pwl can be used with datasets for Design Variables but not for Project variables).

pwl(dataset_exp,variable)

pwl_periodic

Piecewise Linear for periodic extrapolation on x.

pwl_periodic(dataset_exp,variable)

sqrt

Square Root

sqrt(x)

ln

Natural Logarithm

(The "log" function has been discontinued. If you use "log(x)" in an expression, the software automatically changes it to "ln(x)".)

ln(x)

log10

Logarithm base 10

log10(x)

int

Truncated integer function

int(x)

nint

Nearest integer

nint(x)

max

Maximum value of two parameters

max(x,y)

min

Minimum value of two parameters

min(x,y)

mod

Modulus

mod(x,y)

rem

Returns the fractional part of a decimal number such that rem(x) = x-int(x)

rem(x)

clp

Implements smooth interpolation employing weighted impact of all points of the dataset (not just the closest one). See formula below.

Note: If used with a large 3D dataset, clp function will degrade.

clp(datasetName, X,Y,Z)

clp Formula

CLP Formula

CLP Formula

Related Topics:

Defining an Expression