VM-NR1677-02-2
VM-NR1677-02-2
NUREG/CR-1677: Volume 2, Benchmark Problem No. 2
Overview
| Reference: | NUREG/CR-1677 Volume II Piping Benchmark Problems, Dynamic Analysis Independent Support Motion Response Spectrum Method, P. Bezler, M. Subudhi & M. Hartzman of Brookhaven National Laboratory, prepared for the U.S. Nuclear Regulatory Commission, August 1985, Problem 2, pages 77-137. |
| Analysis Type(s): | |
| Element Type(s): | |
| Input Listing: |
Test Case
For test case description, problem sketch, material properties,
geometry properties and loadings refer to VM-NR1677-02-2-a
Results Comparison
Table 123: Frequencies Obtained from Modal Solution
| Mode | Frequency |
|---|---|
| 1 | 9.3401 |
| 2 | 12.738 |
| 3 | 15.372 |
| 4 | 17.276 |
| 5 | 21.652 |
| 6 | 25.445 |
| 7 | 32.279 |
| 8 | 38.296 |
| 9 | 41.16 |
| 10 | 47.767 |
| 11 | 56.304 |
| 12 | 59.678 |
| 13 | 61.054 |
| 14 | 68.35 |
| 15 | 80.058 |
| 16 | 83.22 |
| 17 | 99.549 |
| 18 | 119.41 |
| 19 | 124.47 |
| 20 | 127.04 |
| 21 | 131.48 |
| 22 | 137.1 |
| 23 | 140.85 |
| 24 | 171.24 |
| 25 | 191.79 |
Case 1: Envelope Spectrum Excitation
Table 124: Maximum Displacements and Rotations Obtained from Spectrum Solve
| Result_Node | Value |
|---|---|
| UX at node95 | 9.604E-02 |
| UY at node84 | 3.982E-02 |
| UZ at node40 | 1.067E-01 |
| ROTX at node6 | 1.039E-03 |
| ROTY at node79 | 1.936E-03 |
| ROTZ at node45 | 8.824E-04 |
Table 125: Element Forces and Moments Obtained from Spectrum Solve
| Result | Mechanical APDL |
|---|---|
| Element 1 | |
| PX(I) | 74.852 |
| VY(I) | 93.143 |
| VZ(I) | 185.41 |
| TX(I) | 5204.7 |
| MY(I) | 16709 |
| MZ(I) | 6919.6 |
| PX(J) | 74.737 |
| VY(J) | 90.642 |
| VZ(J) | 182.99 |
| TX(J) | 5203.7 |
| MY(J) | 11861 |
| MZ(J) | 4745 |
| Element 41 | |
| PX(I) | 457.39 |
| VY(I) | 523.49 |
| VZ(I) | 25.111 |
| TX(I) | 3011.1 |
| MY(I) | 851.6 |
| MZ(I) | 12085 |
| PX(J) | 535.51 |
| VY(J) | 433.99 |
| VZ(J) | 28.322 |
| TX(J) | 2938.4 |
| MY(J) | 1075.8 |
| MZ(J) | 15272 |
Case 2: Independent Support Excitation with SRSS Combination
Table 126: Maximum Displacements and Rotations Obtained from Spectrum Solve
| Result_Node | Value |
|---|---|
| UX at node95 | 6.04E-02 |
| UY at node83 | 2.51E-02 |
| UZ at node40 | 6.72E-02 |
| ROTX at node6 | 6.53E-04 |
| ROTY at node79 | 1.22E-03 |
| ROTZ at node45 | 5.53E-04 |
Table 127: Element Forces and Moments Obtained from Spectrum Solve
| Result | Mechanical APDL |
|---|---|
| Element 1 | |
| PX(I) | 53.21 |
| VY(I) | 52.413 |
| VZ(I) | 117.17 |
| TX(I) | 3267.1 |
| MY(I) | 10496 |
| MZ(I) | 4085.4 |
| PX(J) | 53.12 |
| VY(J) | 50.946 |
| VZ(J) | 115.54 |
| TX(J) | 3266.4 |
| MY(J) | 7448.3 |
| MZ(J) | 2867.6 |
| Element 41 | |
| PX(I) | 271.98 |
| VY(I) | 328.94 |
| VZ(I) | 16.978 |
| TX(I) | 1902.3 |
| MY(I) | 768.53 |
| MZ(I) | 7374.9 |
| PX(J) | 321.68 |
| VY(J) | 273.84 |
| VZ(J) | 19.530 |
| TX(J) | 1869.2 |
| MY(J) | 822.25 |
| MZ(J) | 9398.3 |
Case 3: Independent Support Excitation with Absolute Sum Combination
Table 128: Maximum Displacements and Rotations Obtained from Spectrum Solve
| Result_Node | Value |
|---|---|
| UX at node95 | 8.48E-02 |
| UY at node84 | 3.70E-02 |
| UZ at node40 | 9.43E-02 |
| ROTX at node6 | 9.17E-04 |
| ROTY at node79 | 1.71E-03 |
| ROTZ at node45 | 7.76E-04 |
Table 129: Element Forces and Moments Obtained from Spectrum Solve
| Result | Mechanical APDL |
|---|---|
| Element 1 | |
| PX(I) | 76.855 |
| VY(I) | 77.164 |
| VZ(I) | 162.53 |
| TX(I) | 4576 |
| MY(I) | 14676 |
| MZ(I) | 5837 |
| PX(J) | 76.759 |
| VY(J) | 75.133 |
| VZ(J) | 160.34 |
| TX(J) | 4575.2 |
| MY(J) | 10437 |
| MZ(J) | 4051.9 |
| Element 41 | |
| PX(I) | 378.41 |
| VY(I) | 457.82 |
| VZ(I) | 23.506 |
| TX(I) | 2673.1 |
| MY(I) | 1257.1 |
| MZ(I) | 10361 |
| PX(J) | 448.22 |
| VY(J) | 380.34 |
| VZ(J) | 28.547 |
| TX(J) | 2634.3 |
| MY(J) | 1286.7 |
| MZ(J) | 13196 |
Note: PX (I) and PX (J) = Section axial force at node I and J
VY (I) and VY (J) = Section shear forces along Y direction at node I and J
VZ (I) and VZ (J) = Section shear forces along Z direction at node I and J
TX (I) and TX (J) = Section torsional moment at node I and J
MY (I) and MY (J) = Section bending moments along Y direction at node I and J
MZ (I) and MZ (J) = Section bending moments along Z direction at node I and J