The concrete is modeled via the coupled damage-plasticity microplane model:
| Material Parameters for Concrete | |||
|---|---|---|---|
| Young’s modulus |
| MPa | 20000 |
| Poisson’s ratio |
| - | 0.2 |
| Uniaxial compressive strength |
| MPa | 31.6 |
| Biaxial compressive strength |
| MPa | 36.34 |
| Uniaxial tensile strength |
| MPa | 3 |
| Tension cap hardeningfactor |
| - | 1 |
| Hardening parameter |
| MPa2 | 4E4 |
| Compression cap location |
| MPa | -35 |
| Compression cap shape |
| - | 2 |
| Threshold for tension damage |
| - | 0 |
| Threshold for compression damage |
| - | 2E-5 |
| Tension damage parameter |
| - | 3000 |
| Compression damage parameter |
| - | 2000 |
| Nonlocal interaction range parameter |
| mm2 | 1600 |
| Over nonlocal parameter |
| - | 2.5 |
The parameters are input as follows:
|
MP, EX, 1, |
|
MP, NUXY, 1, |
| TB, MPLA, 1, , , DPC |
|
TBDATA,1, |
|
TBDATA,7, |
| TB, MPLA, 1, , , NLOCAL |
|
TBDATA, 1, |
The rebar steel is modeled using von Mises plasticity with linear hardening (BISO material model) and the following parameters:
| Material Parameters for Rebar Steel | ||
|---|---|---|
| Young’s modulus | MPa | 1.9E5 |
| Poisson’s ratio | - | 0.3 |
| Yield stress | MPa | 470 |
| Tangent modulus | MPa | 1000 |