The concrete material is defined using a modified Drucker-Prager material model (TB,CONCR,,,,DP) or a Menetrey-Willam material model (TB,CONCR,,,,MW).
Exponential softening (TB,CONCR,,,,HSD2) is used with either concrete material model.
The reinforcing material uses a bilinear kinematic hardening model.
| Material Properties for Concrete Material Models | ||
|---|---|---|
| DP [a] | MW [b] | |
| Young's Modulus (GPa) | 30 | 30 |
| Poisson's Ratio | 0.2 | 0.2 |
| Density (Kgm-3) | 2500 | 2500 |
| Uniaxial compressive strength (MPa) | 28 | 28 |
| Biaxial compressive strength (MPa) | 33.6 | 33.6 |
| Uniaxial tensile strength (MPa) | 2.2 | 2.2 |
| Dilatancy factor in tension | 0.25 | -- |
| Dilatancy factor in compression | 1 | -- |
| Dilatancy angle (°) | -- | 20 |
| Plastic strain at uniaxial compressive strength | 0.00133 | -- |
| Plastic strain at transition from power law to exponential softening | 0.00293 | -- |
| Relative stress level at start of nonlinear hardening | 0.33 | -- |
| Residual relative stress level at transition from power law to exponential softening | 0.85 | -- |
| Residual compressive relative stress | 0.2 | -- |
| Mode I area-specific fracture energy (J/m²) | 100 | -- |
| Residual tensile relative stress | 0.1 | -- |
| Material Properties for Reinforcing Steel | |
|---|---|
| Young's Modulus (GPa) | 200 |
| Poisson's Ratio | 0.3 |
| Density (Kgm-3) | 7820 |
| Tensile strength (MPa) | 500 |
| Tangent modulus (MPa) | 1740 |