Bibliography

[1] Weininger, D. (1988). "SMILES, a Chemical Language and Information System. 1. Introduction to Methodology and Encoding." J. Chem. Inf. Comput. Sci. 28(1): 31 - 36..

[2] Naik et al., SAE International Journal of Engines (2010) 3, 241–259..

[3] B. E. Poling, J. M. Prausnitz, and J. P. O'Connell, The Properties of Gases and Liquids, 5 ed. New York: McGraw-Hill, 2000..

[4] Turanyi, T. (1997). "Applications of sensitivity analysis to combustion chemistry." Reliability Engineering and System Safety 57: 41-48..

[5] Vajda, S., Valko, P., Turanyi, T. "Principal component analysis of kinetic models." International Journal of Chemical Kinetics 17: 55-81, 1985..

[6] Lu, T. and C. K. Law (2005). "A directed relation graph method for mechanism reduction." Proceedings of the Combustion Institute 30: 1333-1341..

[7] Lu, T. and C. K. Law (2006). "Linear time reduction of large kinetic mechanisms with directed relation graph: n-heptane and iso-octane." Combustion and Flame 144: 24-36..

[8] Lu, T. and C. K. Law (2006). "On the applicability of directed relation graphs to the reduction of reaction mechanisms." Combustion and Flame 146: 472-483..

[9] Pepiot-Desjardins, P. and H. Pitsch (2008). "An efficient error-propagation-based reduction method for large chemical kinetic mechanisms, Combustion and Flame 154 (2008) 67-81." Comb. Flame 154: 67-81..

[10] Liang, L., J. G. Stevens, et al. (2009). "A dynamic adaptive chemistry scheme for reactive flow computations." Proc. Comb. Inst. 32: 527-534..

[11] Sun, W., Chen, X., Gou, X., Ju, Y. "A path flux analysis method for the reduction of detailed chemical kinetic mechanisms," Comb. Flame, 157: 1298-1307, 2010..

[12] S. S. Ahmed, F. Mauss, G. Moreac, and T. Zeuch, "A Comprehensive and Compact n-Heptane Oxidation Model Derived Using Chemical Lumping," Phys. Chem. Chem. Phys., 9: 1107- 1126, 2007..

[13] T. Lu, and C. K. Law, "Strategies for Mechanism Reduction for Large Hydrocarbons: n- Heptane," Combust. Flame, 154: 153-163, 2008.

[14] Lam, S. H. (1993). "Using CSP to understand complex chemical kinetics." Combustion Science and Technology 89(5-6): 375.

[15] Lam, S. H. and D. A. Goussis (1994). "The CSP method for simplifying kinetics." International Journal of Chemical Kinetics 26: 461-486.

[16] Goussis, D. A. (1996). "On the construction and use of reduced chemical kinetic mechanisms produced on the basis of given algebraic relations." Journal of Computational Physics 128: 261-273.

[17] Massias, A., D. Diamantis, et al. (1999). "An algorithm for the construction of global reduced mechanisms with CSP data." Combustion and Flame 117: 685-708..

[18] Massias, A., D. Diamantis, et al. (1999). "Global Reduced Mechanisms for Methane and Hydrogen Combustion and NO Formation Constructed with CSP Data." Combustion and Flame 117: 685-708..

[19] Lu, T. and C. K. Law (2006). "Linear time reduction of large kinetic mechanisms with directed relation graph: n-heptane and iso-octane." Combustion and Flame 144: 24-36..

[20] Lu, T. and C. K. Law (2006). "On the applicability of directed relation graphs to the reduction of reaction mechanisms." Combustion and Flame 146: 472-483..

[21] Chung. T.-H., Ajlan, M., Lee, L. L.,Starling, K. E., Ind Eng Chem Fundam. 23: 8 (1984)..

[22] Gomez-Nieto, M. and Thodos, G. Generalized treatment for the vapor pressure behavior of polar and hydrogen‐bonding compounds, Can. J. Chem. Eng., 55:4 445-449 (1977).

[23] Gomez-Nieto, M. and Thodos, G., Generalized vapor pressure equation for nonpolar substances, Ind. Eng. Chem. Fundam., 17 45-51 (1978).

[24] Gomez-Nieto, M. and Thodos, G., A New Vapor Pressure Equation and Its Application to Normal Alkanes, Ind. Eng. Chem. Fundam., 16 254 (1977).

[25] Rackett, H. G: J., Equation of State for Saturated Liquids, Chem. Eng. Data, 15:514 (1970).

[26] Spencer, C. F., and S. B. Adler, A critical review of equations for predicting saturated liquid density, J. Chem. Eng. Data, 23:82 (1978).

[27] Thek, R. E., and L.I., Stiel, A New Reduced Vapor Pressure Equation, AIChE J., 12:3, 599-602 (1966).

[28] Thek, R., E., and L.I., Stiel, A New Reduced Vapor Pressure Equation, Addendum, AIChE J., 13:626 (1967).

[29] Vetere, A., New Generalized Correlations for Enthalpy of Vaporization of Pure Compounds, Laboratori Ricerche Chimica Industriale, SNAM PROGETTI, San Donato Milanese, 1973.

[30] Viswanath, D. S., and N. R. Kuloor, On a Generalized Watson's Relation for Latent Heat of Vaporization,Can. J. Chem. Eng., 45:29 (1967).

[31] Missenard, F-A.: C.R. 260:5521 (1965).

[32] Klincewicz, K. M.: S.M. thesis in chemical engineering, Massachusetts Institute of Technology, Cambridge, Mass., June 1982.

[33] Klincewicz, K. M., and R. C. Reid, Estimation of critical properties with group contribution methods, AIChE J., 30:1, 137-142 (1984).

[34] Chueh, C. F., and A.C. Swanson, Estimating Liquid Heat Capacity (a) Chem. Engr. Progr., 69, 7, 83 (1973).

[35] Chueh, C. F., and A.C. Swanson, Estimating Liquid Heat Capacity (b) Can. J. Chem. Eng., 51, 596 (1973).

[36] van Velzen, D., Cardozo, R. L, and Langenkamp, Liquid Viscosity and Chemical Constitution of Organic Compounds: A new Correlation and a Compilation of Literature Data, H.: Ind. Eng. Chem. Fundam., 11:20 (1972).

[37] DIPPR 801 Database, AIChE, https://www.aiche.org/dippr/events-products/801-database.

[38] J. B. MacQueen, "Some Methods for classification and Analysis of Multivariate Observations", Proceedings of 5th Berkeley Symposium on Mathematical Statistics and Probability, Berkeley, University of California Press, 1:281-297 (1967)..

[39] Andrew Moore: "K-means and Hierarchical Clustering - Tutorial Slides" https://www.autonlab.org/tutorials/kmeans.html (2011).

[40] DIPPR Diadem, DIPPR Information and Data Evaluation Manager for the Design Institute for Physical Properties. 2006, BYU..

[41] P. Ghosh; K. J. Hickey; S. B. Jaffe, Ind. Eng. Chem. Res. 45 (2006) 337-345.

[42] Ghosh, P. and S.B. Jaffe, Ind. Eng. Chem. Res., 2006. 45: p. 346-351..

[43] H. F. Calcote and D. M. Manos, "Effect of molecular structure on incipient soot formation," Comb. Flame, 49: 289-304, 1983..

[44] ASTM International, "Standard Test Method for Smoke Point of Kerosine and Aviation Turbine Fuel," D1322-08, 2008..

[45] R. J. Gill and D. B. Olson, "Estimation of Soot Thresholds for Fuel Mixtures," Comb. Sci. Tech., 40:5, 307-315, 1984..

[46] H. Kooijman and R. Taylor, The ChemSep Book, 2nd ed: chemsep.org, 2000..

[47] R. H. Perry, D. W. Green, and J. O. Maloney, Perry's Chemical Engineers' Handbook, 7th ed: McGraw-Hill, 1997..