VM86

VM86
Harmonic Response of a Dynamic System

Overview

Reference:W. T. Thomson, Vibration Theory and Applications, 2nd Printing, Prentice-Hall, Inc., Englewood Cliffs, NJ, 1965, pg. 56, ex. 3.1-2.
Analysis Type(s):Harmonic Analysis (ANTYPE = 3)
Element Type(s):Combination Elements (COMBIN40)
Input Listing:vm86.dat

Test Case

A machine of weight W is supported on springs of total stiffness k. If a harmonic disturbing force of magnitude F1 and frequency f (equal to the natural frequency of the machine, fn) acts on the machine, determine the displacement response in terms of the peak amplitude Ao and phase angle Φ. Assume a viscous damping coefficient c.

Figure 123: Dynamic System Problem Sketch

Dynamic System Problem Sketch

Material PropertiesLoading
W = 193 lb
k = 200 lb/in
c = 6 lb-sec/in
g = 386 in/sec2
F1 = 10 lb

Analysis Assumptions and Modeling Notes

The mass of the machine is m = W/g = 0.5 lb-sec2/in. Hence the frequency of the disturbing force (f) becomes f = fn = sqrt(k/m)/2π = 3.1831 Hz. The node locations are arbitrarily selected.

Results Comparison

TargetMechanical APDLRatio
Ao, in0.08330.08331.000
angle, deg-90.0-90.01.000