/COM,ANSYS MEDIA REL. 2024R2 (05/10/2024) REF. VERIF. MANUAL: REL. 2024R2 /VERIFY,VM289 /TITLE,VM289,SPHERICAL CAVITY IN AN INFINITE MEDIUM /COM, /COM, REFERENCE: /COM, SOIL DYNAMICS, ARNOLD VERRUJIT, DELFT UNIVERSITY /COM, OF TECHNOLOGY, PP 138-139 /PREP7 P=750 ! INTERNAL PRESSURE IN PA PI=ACOS(-1) R=1 ! RADIUS IN M H=4 D=0.5*PI*R/5 ! ELEMENT SIZE DPML=H+4*D ! PML ELEMENT THICKNESS EXX=1e+07 ! YOUNG'S MODULUS NUXY=0.33 ! POISSON'S RATIO GX=EXX/(2*(1+NUXY)) ! RIGIDITY MODULUS MP,EX,1,EXX ! DEFINE MATERIAL MODEL MP,NUXY,1,NUXY MP,GXY,1,GX ET,1,SOLID186 ! 3D 20 NODE STRUCTURAL SOLID ET,2,SOLID186 KEYO,2,15,1 ! INCLUDE PML ABSORBING CONDITION *DIM,A,ARRAY,3 A(1)=0 A(2)=H A(3)=DPML *DO,i,1,2 *DO,j,1,2 *DO,k,1,2 BLOCK,A(i),A(i+1),A(j),A(j+1),A(k),A(k+1) *ENDDO *ENDDO *ENDDO VGLUE,ALL SPHERE,0,R,0,90 ! CREATE A SPHERICAL VOLUME VSEL,S,,,1,2 VSBV,1,2,,DELE,DELE ! SUBTRACT VOLUME 2 FROM VOLUME 1 ALLSEL ALLSEL,BELOW,VOLU KL,14,.5 ! GENERATING KEY POINT ON EXISTING LINE KL,16,.5 KL,22,.5 K,,.5,.5,.5 A,3,18,20,7 ! CREATING AREA THROUGH KEY POINTS A,20,9,8,7 A,20,2,6,7 VSBA,3,ALL ! SUBTRACT AREAS FROM VOLUME 3 ALLSEL VSEL,S,LOC,X,0,A(2) VSEL,R,LOC,Y,0,A(2) VSEL,R,LOC,Z,0,A(2) CM,VOL1,VOLU ALLSEL CMSEL,S,VOL1 ESIZE,D TYPE,1 MAT,1 VMESH,ALL ! SPHERICAL CAVITY ALLSEL CMSEL,U,VOL1 ESIZE,D TYPE,2 MAT,1 VMESH,ALL ! PML LAYER ALLSEL CSYS,2 NSEL,S,LOC,X,R SF,ALL,PRES,P ! INTERNAL PRESSURE ALLSEL CSYS,0 NSEL,S,LOC,X,A(3) NSEL,A,LOC,Y,A(3) NSEL,A,LOC,Z,A(3) D,ALL,ALL ALLSEL NSEL,S,LOC,Z,0 DSYM,SYMM,Z ! SYMMETRIC BOUNDARY CONTION NORMAL TO Z ALLSEL NSEL,S,LOC,Y,0 DSYM,SYMM,Y ! SYMMETRIC BOUNDARY CONDITION NORMAL TO Y ALLSEL NSEL,S,LOC,X,0 DSYM,SYMM,X ! SYMMETRIC BOUNDARY CONDITION NORMAL TO X ALLSEL FINISH /SOLUTION ANTY,STATIC OUTRES,ALL,ALL TIME,1.0 /OUT,SCRATCH SOLVE FINISH /POST1 CSYS,2 SET,LAST NSEL,S,LOC,Z,0 NSEL,R,LOC,Y,0 NSEL,R,LOC,X,R,H ! POST PROCESSING DISPLACEMENT,STRESS FROM X=1M-4M NLIST NSORT,LOC,X,1 NSORT,U,X,0 PRNS,U,X *GET,UX1,NODE,NODE(1.0000,0,0),U,X *GET,UX2,NODE,NODE(1.9474,0,0),U,X *GET,UX3,NODE,NODE(3.0526,0,0),U,X *GET,UX4,NODE,NODE(3.8421,0,0),U,X PRNSOL,S,COMP *GET,SX1,NODE,NODE(1.0000,0,0),S,X *GET,SX2,NODE,NODE(1.9474,0,0),S,X *GET,SX3,NODE,NODE(3.0526,0,0),S,X *GET,SX4,NODE,NODE(3.8421,0,0),S,X *GET,SY1,NODE,NODE(1.0000,0,0),S,Y *GET,SY2,NODE,NODE(1.9474,0,0),S,Y *GET,SY3,NODE,NODE(3.0526,0,0),S,Y *GET,SY4,NODE,NODE(3.8421,0,0),S,Y *DIM,LOC,,4 *DIM,RAD_D1,,4 *DIM,RAD_D2,,4 *DIM,RAD_S1,,4 *DIM,RAD_S2,,4 *DIM,TAN_S1,,4 *DIM,TAN_S2,,4 *DIM,RATIO1,,4 *DIM,RATIO2,,4 *DIM,RATIO3,,4 LOC(1,1)=1.0000,1.9474,3.0526,3.8421 ! DISTANCE FROM INNER RADIUS OF SPHERICAL CAVLITY RAD_D2(1,1)=UX1,UX2,UX3,UX4 ! MAPDL RADIAL DISPLACEMENTS RAD_S2(1,1)=SX1,SX2,SX3,SX4 ! MAPDL RADIAL STRESSES TAN_S2(1,1)=SY1,SY2,SY3,SY4 ! MAPDL TANGENTIAL STRESS *DO,I,1,4 RAD_D1(I,1)=(P*R**3)/(4*Gx*LOC(I,1)**2) ! ANALYTICAL RESULTS RAD_S1(I,1)=-(P*R**3)/(LOC(I,1)**3) TAN_S1(I,1)=(P*R**3)/(2*LOC(I,1)**3) RATIO1(I,1)=RAD_D2(I,1)/RAD_D1(I,1) RATIO2(I,1)=RAD_S2(I,1)/RAD_S1(I,1) RATIO3(I,1)=TAN_S2(I,1)/TAN_S1(I,1) *ENDDO /OUT,vm289,vrt /COM, /COM, ------------VM289 RESULTS COMPARISON ------------ /COM, /COM, LOCATION | TARGET | Mechanical APDL | RATIO /COM, /COM, RADIAL DISPLACEMENT /COM, *VWRITE,LOC(1,1),RAD_D1(1,1),RAD_D2(1,1),RATIO1(1,1) (F7.4,1XG14.5,1XG14.5,1XF10.3) /COM, /COM, RADIAL STRESS /COM, *VWRITE,LOC(1,1),RAD_S1(1,1),RAD_S2(1,1),RATIO2(1,1) (F7.4,1XF10.3,4XF10.3,5XF10.3) /COM, /COM, TANGENTIAL STRESS /COM, *VWRITE,LOC(1,1),TAN_S1(1,1),TAN_S2(1,1),RATIO3(1,1) (F7.4,1XF10.3,4XF10.3,5XF10.3) /COM, --------------------------------------------------- /OUT, *LIST,vm289,vrt FINISH