/COM,ANSYS MEDIA REL. 2024R2 (05/10/2024) REF. VERIF. MANUAL: REL. 2024R2 /VERIFY,VM271 /TITLE,VM271,CONVECTION TREATMENT PROBLEM FOR A HOLLOW CYLINDER WITH FLUID FLOW /COM, REFERENCE: " INTRODUCTION TO HEAT TRANSFER" - VEDAT S.ARPACI, AHMET SELAMET /COM, SHU-HSIN KAO, 2000,PG:90-100 /COM, /COM, /COM, USING SOLID70 - 3D 8-NODE THERMAL SOLID /COM, /NOPR R1 = 0.01105 ! INNER RADIUS OF THE CYLINDER (M) R2 = 0.02 ! OUTER RADIUS OF THE CYLINDER (M) Z1 = 0 Z2 = 0.1 THETA1 = 0 THETA2 = 180 LENGTH = Z2-Z1 ! LENGTH OF THE FLUID ELEMENT (M) DIAMETER = 2*R1 ! DIAMETER (M) FILMAREA = ACOS(-1)*DIAMETER*LENGTH ! FILMAREA (M^2) CROSSAREA = 0.25*ACOS(-1)*DIAMETER**2 FILM = 300 ! FILM COEFFICIENT FOR SURFACE ELEMENTS (W/M^2 C) CP = 0.5474 ! SPECIFIC HEAT FOR FLUID (J/KG C) COND = 1.0E-16 ! THERMAL CONDUCTIVITY FOR FLUID (W/M C) TINLET = 700 ! INLET TEMPERATURE (DEGREE) TBULK = 2000 ! BULK TEMPERATURE (DEGREE) MDOT = 0.002*60*60 ! MASS FLOW RATE FOR FLUID (KG/SEC) CPS = 1 ! SPECIFIC HEAT FOR CYLINDER (J/KG C) CONDS = 10000 ! THERMAL CONDUCTIVITY FOR CYLINDER (W/M C) /PREP7 ET,1,FLUID116 KEYOPT,1,1,1 ! TEMPERATURE DOF ONLY KEYOPT,1,9,2 ! UPWIND DIFFERENCE SCHEME R,1,DIAMETER,CROSSAREA ! DIA FOR CONVECTION,CROSS SECTION AREA FOR CONDUCTION MP,KXX,1,COND MP,C,1,CP ET,2,SURF152 KEYOPT,2,4,1 ! NO MIDSIDE NODES KEYOPT,2,5,0 KEYOPT,2,8,2 ! CONVECTION ET,3,SOLID70 MP,KXX,3,CONDS K,1,0,0,Z1 K,2,0,0,Z2 L,1,2 LESIZE,1,,,3 TYPE,1 MAT,1 REAL,1 LMESH,ALL *GET,DLEN1,NODE,1,LOC,Z *GET,DLEN2,NODE,3,LOC,Z *GET,DLEN3,NODE,4,LOC,Z *GET,DLEN4,NODE,2,LOC,Z CYLIND,R1,R2,Z1,Z2,THETA1,THETA2 CYLIND,R1,R2,Z1,Z2,THETA1+180,THETA2+180 VGLUE,1,2 MSHAP,TRIOPT,3D LSEL,S,LINE,,2,4,2 LSEL,A,LINE,,7,9,2 LESIZE,ALL,,,3 LSEL,S,LINE,,10,13,1 LESIZE,ALL,,,18 LSEL,S,LINE,,6,8,2 LSEL,A,LINE,,28,29,1 LSEL,A,LINE,,3,5,2 LSEL,A,LINE,,26,27,1 LESIZE,ALL,,,24 TYPE,3 MAT,3 REAL,3 VMESH,ALL CSYS,1 NSEL,S,LOC,X,R1 ESLN,S TYPE,2 MAT,2 REAL,2 ESURF KEYOPT,2,5,2 ! TWO NODES 5TH,6TH NODES CSYS,0 ALLSEL,ALL ESEL,S,TYPE,,1 CM,COM116,ELEM ! COMPONENT WITH FLUID116 ELEMENTS ESEL,S,TYPE,,2 CM,COM152,ELEM ! COMPONENT WITH SURF152 ELEMENTS ALLSEL,ALL MSTOLE,1,'COM152','COM116' ! MAP 152 TO 116 AND CREATE THE 5/6 NODES OF 152 ALLSEL,ALL KSEL,S,,,1 NSLK,S D,ALL,TEMP,TINLET ! INLET TEMPERATURE ALLSEL,ALL ESEL,S,TYPE,,1 SFE,ALL,,HFLUX,,MDOT ! MASS FLOW RATE FOR FLUID ELEMENT ESEL,ALL CSYS,1 NSEL,S,LOC,X,R2 D,ALL,TEMP,TBULK ! BULK TEMPERATURE ON THE CYLINDER CSYS,0 ALLSEL,ALL ESEL,S,TYPE,,2 SFE,ALL,1,CONV,0,FILM ! FILM COEFFICIENT FOR SURFACE ELEMENT SFE,ALL,1,CONV,2,0 ! SET BULK TEMP ESEL,ALL EPLOT FINISH /SOLU ANTYPE,STATIC ! STEADY STATE ANALYSIS OUTRES,ALL,ALL /OUT,SCRATCH SOLVE FINISH /POST1 SET,LAST *GET,TEMP1,NODE,1,TEMP ! TEMPERATURE AT NODE 1 OF FLUID116 ELEMENT *GET,TEMP2,NODE,2,TEMP ! TEMPERATURE AT NODE 2 OF FLUID116 ELEMENT *GET,TEMP3,NODE,3,TEMP ! TEMPERATURE AT NODE 3 OF FLUID116 ELEMENT *GET,TEMP4,NODE,4,TEMP ! TEMPERATURE AT NODE 4 OF FLUID116 ELEMENT ESEL,S,TYPE,,3 NSLE,S /SHOW,PNG,REV /VIEW,1,1,1,1 PLNSOL,TEMP /SHOW,CLOSE *DIM,LABEL,CHAR,1,4 *DIM,LEN,,1,4 *DIM,VALUE_1,,4,3 LABEL(1,1) = 'NODE1' LABEL(1,2) = 'NODE3' LABEL(1,3) = 'NODE4' LABEL(1,4) = 'NODE2' MODULUS = (FILM*ACOS(-1)*DIAMETER*LENGTH)/(MDOT*CP) /COM, ANALYTICAL VALUES CALCULATED /COM, USING EQUATION MENTIONED IN THE REFERENCE BOOK POSITION1 = (DLEN1- DLEN1)/LENGTH POSITION2 = (DLEN2- DLEN1)/LENGTH POSITION3 = (DLEN3- DLEN1)/LENGTH POSITION4 = (DLEN4- DLEN1)/LENGTH ATEMP1 = (TINLET-TBULK)*EXP(-MODULUS*POSITION1)+TBULK ATEMP2 = (TINLET-TBULK)*EXP(-MODULUS*POSITION2)+TBULK ATEMP3 = (TINLET-TBULK)*EXP(-MODULUS*POSITION3)+TBULK ATEMP4 = (TINLET-TBULK)*EXP(-MODULUS*POSITION4)+TBULK /OUT, *VFILL,LEN(1,1),DATA,POSITION1 *VFILL,LEN(1,2),DATA,POSITION2 *VFILL,LEN(1,3),DATA,POSITION3 *VFILL,LEN(1,4),DATA,POSITION4 *VFILL,VALUE_1(1,1),DATA,ATEMP1 *VFILL,VALUE_1(1,2),DATA,TEMP1 *VFILL,VALUE_1(1,3),DATA,ABS(ATEMP1/TEMP1) *VFILL,VALUE_1(2,1),DATA,ATEMP2 *VFILL,VALUE_1(2,2),DATA,TEMP3 *VFILL,VALUE_1(2,3),DATA,ABS(ATEMP2/TEMP3) *VFILL,VALUE_1(3,1),DATA,ATEMP3 *VFILL,VALUE_1(3,2),DATA,TEMP4 *VFILL,VALUE_1(3,3),DATA,ABS(ATEMP3/TEMP4) *VFILL,VALUE_1(4,1),DATA,ATEMP4 *VFILL,VALUE_1(4,2),DATA,TEMP2 *VFILL,VALUE_1(4,3),DATA,ABS(ATEMP4/TEMP2) SAVE,TABLE_1 FINISH /CLEAR,NOSTART /COM, /COM, USING SHELL131 - 4-NODE THERMAL SHELL /COM, /NOPR R1 = 0.01105 ! INNER RADIUS OF THE CYLINDER (M) R2 = 0.02 ! OUTER RADIUS OF THE CYLINDER (M) Z1 = 0 Z2 = 0.1 THETA1 = 0 THETA2 = 180 LENGTH = Z2-Z1 ! LENGTH OF THE FLUID ELEMENT (M) DIAMETER = 2*R1 ! DIAMETER (M) FILMAREA = ACOS(-1)*DIAMETER*LENGTH ! FILMAREA (M^2) CROSSAREA = 0.25*ACOS(-1)*DIAMETER**2 FILM = 300 ! FILM COEFFICIENT FOR SURFACE ELEMENTS (W/M^2 C) CP = 0.5474 ! SPECIFIC HEAT FOR FLUID (J/KG C) COND = 1.0E-16 ! THERMAL CONDUCTIVITY FOR FLUID (W/M C) TINLET = 700 ! INLET TEMPERATURE (DEGREE) TBULK = 2000 ! BULK TEMPERATURE (DEGREE) MDOT = 0.002*60*60 ! MASS FLOW RATE FOR FLUID (KG/SEC) CPS = 1 ! SPECIFIC HEAT FOR CYLINDER (J/KG C) CONDS = 10000 ! THERMAL CONDUCTIVITY FOR CYLINDER (W/M C) /PREP7 ET,1,FLUID116 KEYOPT,1,1,1 ! TEMPERATURE DOF ONLY KEYOPT,1,9,2 ! UPWIND DIFFERENCE SCHEME R,1,DIAMETER,CROSSAREA ! DIA FOR CONVECTION,CROSS SECTION AREA FOR CONDUCTION MP,KXX,1,COND MP,C,1,CP ET,2,SURF152 KEYOPT,2,4,1 ! NO MIDSIDE NODES KEYOPT,2,5,0 KEYOPT,2,8,2 ! CONVECTION KEYOPT,2,11,1 ET,3,SHELL131 KEYOPT,3,3,1 ! LINEAR TEMPERATURE VARIATION THROUGH LAYER KEYOPT,3,4,3 ! THREE LAYERS MP,KXX,3,CONDS SECTYPE,3,SHELL SECN,3 SECDATA,(R2-R1)/3,3 SECDATA,(R2-R1)/3,3 SECDATA,(R2-R1)/3,3 SECOFF,MID K,1,0,0,Z1 K,2,0,0,Z2 L,1,2 LESIZE,1,,,3 TYPE,1 MAT,1 REAL,1 LMESH,ALL *GET,DLEN1,NODE,1,LOC,Z *GET,DLEN2,NODE,3,LOC,Z *GET,DLEN3,NODE,4,LOC,Z *GET,DLEN4,NODE,2,LOC,Z K,3,R1,0,Z1 K,4,R1,0,Z2 K,5,0,R1,Z2 K,6,0,R1,Z1 LARC,6,3,1,R1 L,3,4 LARC,4,5,2,R1 L,5,6 AL,2,3,4,5 ARSYM,X,ALL ARSYM,Y,ALL AGLUE,ALL LSEL,S,LINE,,3,7,2 LSEL,A,LINE,,13 LESIZE,ALL,,,18 LSEL,S,LINE,,2,4,2 LSEL,A,LINE,,18,23,1 LESIZE,ALL,,,12 TYPE,3 MAT,3 SECN,3 AMESH,ALL CSYS,1 NSEL,S,LOC,X,R1 ESLN,S TYPE,2 MAT,2 REAL,2 ESURF KEYOPT,2,5,2 ! TWO NODES 5TH,6TH NODES CSYS,0 ALLSEL,ALL ESEL,S,TYPE,,1 CM,COM116,ELEM ! COMPONENT WITH FLUID116 ELEMENTS ESEL,S,TYPE,,2 CM,COM152,ELEM ! COMPONENT WITH SURF152 ELEMENTS ALLSEL,ALL MSTOLE,1,'COM152','COM116' ! MAP 152 TO 116 AND CREATE THE 5/6 NODES OF 152 ALLSEL,ALL KSEL,S,,,1 NSLK,S D,ALL,TEMP,TINLET ! INLET TEMPERATURE ALLSEL,ALL ESEL,S,TYPE,,1 SFE,ALL,,HFLUX,,MDOT ! MASS FLOW RATE FOR FLUID ELEMENT ESEL,ALL CSYS,1 NSEL,S,LOC,X,R1 D,ALL,TBOT,TBULK ! BULK TEMPERATURE ON THE CYLINDER CSYS,0 ALLSEL,ALL ESEL,S,TYPE,,2 SFE,ALL,1,CONV,0,FILM ! FILM COEFFICIENT FOR SURFACE ELEMENT SFE,ALL,1,CONV,2,0 ! SET BULK TEMP ESEL,ALL EPLOT FINISH /SOLU ANTYPE,STATIC ! STEADY STATE ANALYSIS OUTRES,ALL,ALL /OUT,SCRATCH SOLVE FINI /POST1 SET,LAST *GET,TEMP1,NODE,1,TEMP ! TEMPERATURE AT NODE 1 OF FLUID116 ELEMENT *GET,TEMP2,NODE,2,TEMP ! TEMPERATURE AT NODE 2 OF FLUID116 ELEMENT *GET,TEMP3,NODE,3,TEMP ! TEMPERATURE AT NODE 3 OF FLUID116 ELEMENT *GET,TEMP4,NODE,4,TEMP ! TEMPERATURE AT NODE 4 OF FLUID116 ELEMENT ESEL,S,TYPE,,3 NSLE,S /ESHAPE,1 /SHOW,PNG,REV /VIEW,1,1,1,1 PLNSOL,TTOP PLNSOL,TBOT /SHOW,CLOSE *DIM,LABEL,CHAR,1,4 *DIM,LEN,,1,4 *DIM,VALUE_2,,4,3 LABEL(1,1) = 'NODE1' LABEL(1,2) = 'NODE3' LABEL(1,3) = 'NODE4' LABEL(1,4) = 'NODE2' MODULUS = (FILM*ACOS(-1)*DIAMETER*LENGTH)/(MDOT*CP) /COM, ANALYTICAL VALUES CALCULATED /COM, USING EQUATION MENTIONED IN THE REFERENCE BOOK POSITION1 = (DLEN1- DLEN1)/LENGTH POSITION2 = (DLEN2- DLEN1)/LENGTH POSITION3 = (DLEN3- DLEN1)/LENGTH POSITION4 = (DLEN4- DLEN1)/LENGTH ATEMP1 = (TINLET-TBULK)*EXP(-MODULUS*POSITION1)+TBULK ATEMP2 = (TINLET-TBULK)*EXP(-MODULUS*POSITION2)+TBULK ATEMP3 = (TINLET-TBULK)*EXP(-MODULUS*POSITION3)+TBULK ATEMP4 = (TINLET-TBULK)*EXP(-MODULUS*POSITION4)+TBULK /OUT, *VFILL,LEN(1,1),DATA,POSITION1 *VFILL,LEN(1,2),DATA,POSITION2 *VFILL,LEN(1,3),DATA,POSITION3 *VFILL,LEN(1,4),DATA,POSITION4 *VFILL,VALUE_2(1,1),DATA,ATEMP1 *VFILL,VALUE_2(1,2),DATA,TEMP1 *VFILL,VALUE_2(1,3),DATA,ABS(ATEMP1/TEMP1) *VFILL,VALUE_2(2,1),DATA,ATEMP2 *VFILL,VALUE_2(2,2),DATA,TEMP3 *VFILL,VALUE_2(2,3),DATA,ABS(ATEMP2/TEMP3) *VFILL,VALUE_2(3,1),DATA,ATEMP3 *VFILL,VALUE_2(3,2),DATA,TEMP4 *VFILL,VALUE_2(3,3),DATA,ABS(ATEMP3/TEMP4) *VFILL,VALUE_2(4,1),DATA,ATEMP4 *VFILL,VALUE_2(4,2),DATA,TEMP2 *VFILL,VALUE_2(4,3),DATA,ABS(ATEMP4/TEMP2) SAVE,TABLE_2 FINISH /CLEAR,NOSTART /COM, /COM, USING SOLID278 - 3D 8-NODE LAYERED THERMAL SOLID /COM, /NOPR R1 = 0.01105 ! INNER RADIUS OF THE CYLINDER (M) R2 = 0.02 ! OUTER RADIUS OF THE CYLINDER (M) Z1 = 0 Z2 = 0.1 THETA1 = 0 THETA2 = 180 LENGTH = Z2-Z1 ! LENGTH OF THE FLUID ELEMENT (M) DIAMETER = 2*R1 ! DIAMETER (M) FILMAREA = ACOS(-1)*DIAMETER*LENGTH ! FILMAREA (M^2) CROSSAREA = 0.25*ACOS(-1)*DIAMETER**2 FILM = 300 ! FILM COEFFICIENT FOR SURFACE ELEMENTS (W/M^2 C) CP = 0.5474 ! SPECIFIC HEAT FOR FLUID (J/KG C) COND = 1.0E-16 ! THERMAL CONDUCTIVITY FOR FLUID (W/M C) TINLET = 700 ! INLET TEMPERATURE (DEGREE) TBULK = 2000 ! BULK TEMPERATURE (DEGREE) MDOT = 0.002*60*60 ! MASS FLOW RATE FOR FLUID (KG/SEC) CPS = 1 ! SPECIFIC HEAT FOR CYLINDER (J/KG C) CONDS = 10000 ! THERMAL CONDUCTIVITY FOR CYLINDER (W/M C) /PREP7 ET,1,FLUID116 KEYOPT,1,1,1 ! TEMPERATURE DOF ONLY KEYOPT,1,9,2 ! UPWIND DIFFERENCE SCHEME R,1,DIAMETER,CROSSAREA ! DIA FOR CONVECTION,CROSS SECTION AREA FOR CONDUCTION MP,KXX,1,COND MP,C,1,CP ET,2,SURF152 KEYOPT,2,4,1 ! NO MIDSIDE NODES KEYOPT,2,5,0 KEYOPT,2,8,2 ! CONVECTION KEYOPT,2,11,0 ET,3,SOLID278 KEYOPT,3,3,2 ! LAYERED SOLID MP,KXX,3,CONDS SECT,3,SHELL SECN,3 SECD,(R2-R1)/3,3 SECD,(R2-R1)/3,3 SECD,(R2-R1)/3,3 K,1,0,0,Z1 K,2,0,0,Z2 L,1,2 LESIZE,1,,,3 TYPE,1 MAT,1 REAL,1 LMESH,ALL *GET,DLEN1,NODE,1,LOC,Z *GET,DLEN2,NODE,3,LOC,Z *GET,DLEN3,NODE,4,LOC,Z *GET,DLEN4,NODE,2,LOC,Z CYLIND,R1,R2,Z1,Z2,THETA1,THETA2 CYLIND,R1,R2,Z1,Z2,THETA1+180,THETA2+180 VGLUE,1,2 MSHAP,TRIOPT,3D LSEL,S,LINE,,2,4,2 LSEL,A,LINE,,7,9,2 LESIZE,ALL,,,1 LSEL,S,LINE,,10,13,1 LESIZE,ALL,,,18 LSEL,S,LINE,,6,8,2 LSEL,A,LINE,,28,29,1 LSEL,A,LINE,,3,5,2 LSEL,A,LINE,,26,27,1 LESIZE,ALL,,,24 TYPE,3 MAT,3 SECN,3 VMESH,ALL CSYS,1 NSEL,S,LOC,X,R1 ESLN,S TYPE,2 MAT,2 REAL,2 ESURF KEYOPT,2,5,2 ! TWO NODES 5TH,6TH NODES CSYS,0 ALLSEL,ALL ESEL,S,TYPE,,1 CM,COM116,ELEM ! COMPONENT WITH FLUID116 ELEMENTS ESEL,S,TYPE,,2 CM,COM152,ELEM ! COMPONENT WITH SURF152 ELEMENTS ALLSEL,ALL MSTOLE,1,'COM152','COM116' ! MAP 152 TO 116 AND CREATE THE 5/6 NODES OF 152 ALLSEL,ALL KSEL,S,,,1 NSLK,S D,ALL,TEMP,TINLET ! INLET TEMPERATURE ALLSEL,ALL ESEL,S,TYPE,,1 SFE,ALL,,HFLUX,,MDOT ! MASS FLOW RATE FOR FLUID ELEMENT ESEL,ALL CSYS,1 NSEL,S,LOC,X,R2 D,ALL,TEMP,TBULK ! BULK TEMPERATURE ON THE CYLINDER CSYS,0 ALLSEL,ALL ESEL,S,TYPE,,2 SFE,ALL,1,CONV,0,FILM ! FILM COEFFICIENT FOR SURFACE ELEMENT SFE,ALL,1,CONV,2,0 ! SET BULK TEMP ESEL,ALL EPLOT FINISH /SOLU ANTYPE,STATIC ! STEADY STATE ANALYSIS OUTRES,ALL,ALL /OUT,SCRATCH SOLVE FINI /POST1 SET,LAST *GET,TEMP1,NODE,1,TEMP ! TEMPERATURE AT NODE 1 OF FLUID116 ELEMENT *GET,TEMP2,NODE,2,TEMP ! TEMPERATURE AT NODE 2 OF FLUID116 ELEMENT *GET,TEMP3,NODE,3,TEMP ! TEMPERATURE AT NODE 3 OF FLUID116 ELEMENT *GET,TEMP4,NODE,4,TEMP ! TEMPERATURE AT NODE 4 OF FLUID116 ELEMENT ESEL,S,TYPE,,3 NSLE,S /SHOW,PNG,REV /VIEW,1,1,1,1 PLNSOL,TEMP /SHOW,CLOSE *DIM,LABEL,CHAR,1,4 *DIM,LEN,,1,4 *DIM,VALUE_3,,4,3 LABEL(1,1) = 'NODE1' LABEL(1,2) = 'NODE3' LABEL(1,3) = 'NODE4' LABEL(1,4) = 'NODE2' MODULUS = (FILM*ACOS(-1)*DIAMETER*LENGTH)/(MDOT*CP) /COM, ANALYTICAL VALUES CALCULATED /COM, USING EQUATION MENTIONED IN THE REFERENCE BOOK POSITION1 = (DLEN1- DLEN1)/LENGTH POSITION2 = (DLEN2- DLEN1)/LENGTH POSITION3 = (DLEN3- DLEN1)/LENGTH POSITION4 = (DLEN4- DLEN1)/LENGTH ATEMP1 = (TINLET-TBULK)*EXP(-MODULUS*POSITION1)+TBULK ATEMP2 = (TINLET-TBULK)*EXP(-MODULUS*POSITION2)+TBULK ATEMP3 = (TINLET-TBULK)*EXP(-MODULUS*POSITION3)+TBULK ATEMP4 = (TINLET-TBULK)*EXP(-MODULUS*POSITION4)+TBULK /OUT, *VFILL,LEN(1,1),DATA,POSITION1 *VFILL,LEN(1,2),DATA,POSITION2 *VFILL,LEN(1,3),DATA,POSITION3 *VFILL,LEN(1,4),DATA,POSITION4 *VFILL,VALUE_3(1,1),DATA,ATEMP1 *VFILL,VALUE_3(1,2),DATA,TEMP1 *VFILL,VALUE_3(1,3),DATA,ABS(ATEMP1/TEMP1) *VFILL,VALUE_3(2,1),DATA,ATEMP2 *VFILL,VALUE_3(2,2),DATA,TEMP3 *VFILL,VALUE_3(2,3),DATA,ABS(ATEMP2/TEMP3) *VFILL,VALUE_3(3,1),DATA,ATEMP3 *VFILL,VALUE_3(3,2),DATA,TEMP4 *VFILL,VALUE_3(3,3),DATA,ABS(ATEMP3/TEMP4) *VFILL,VALUE_3(4,1),DATA,ATEMP4 *VFILL,VALUE_3(4,2),DATA,TEMP2 *VFILL,VALUE_3(4,3),DATA,ABS(ATEMP4/TEMP2) SAVE,TABLE_3 /CLEAR, NOSTART /COM, /COM, USING SHELL294 - 4-NODE THERMAL SHELL /COM, /NOPR R1 = 0.01105 ! INNER RADIUS OF THE CYLINDER (M) R2 = 0.02 ! OUTER RADIUS OF THE CYLINDER (M) Z1 = 0 Z2 = 0.1 THETA1 = 0 THETA2 = 180 LENGTH = Z2-Z1 ! LENGTH OF THE FLUID ELEMENT (M) DIAMETER = 2*R1 ! DIAMETER (M) FILMAREA = ACOS(-1)*DIAMETER*LENGTH ! FILMAREA (M^2) CROSSAREA = 0.25*ACOS(-1)*DIAMETER**2 FILM = 300 ! FILM COEFFICIENT FOR SURFACE ELEMENTS (W/M^2 C) CP = 0.5474 ! SPECIFIC HEAT FOR FLUID (J/KG C) COND = 1.0E-16 ! THERMAL CONDUCTIVITY FOR FLUID (W/M C) TINLET = 700 ! INLET TEMPERATURE (DEGREE) TBULK = 2000 ! BULK TEMPERATURE (DEGREE) MDOT = 0.002*60*60 ! MASS FLOW RATE FOR FLUID (KG/SEC) CPS = 1 ! SPECIFIC HEAT FOR CYLINDER (J/KG C) CONDS = 10000 ! THERMAL CONDUCTIVITY FOR CYLINDER (W/M C) /PREP7 ET,1,FLUID116 KEYOPT,1,1,1 ! TEMPERATURE DOF ONLY KEYOPT,1,9,2 ! UPWIND DIFFERENCE SCHEME R,1,DIAMETER,CROSSAREA ! DIA FOR CONVECTION,CROSS SECTION AREA FOR CONDUCTION MP,KXX,1,COND MP,C,1,CP ET,2,SURF152 KEYOPT,2,4,1 ! NO MIDSIDE NODES KEYOPT,2,5,0 KEYOPT,2,8,2 ! CONVECTION ET,3,294 KEYOPT,3,6,1 ! SINGLE MATERIAL LAYER PER INTERPOLATION LAYER KEYOPT,3,8,1 ! STORE TOP AND BOTTOM DATA FOR ALL LAYERS MP,KXX,3,CONDS SECTYPE,3,SHELL SECDATA,(R2-R1)/3,3 SECDATA,(R2-R1)/3,3 SECDATA,(R2-R1)/3,3 SECOFFSET,BOT ! SECTION OFFSET SET TO BOTTOM K,1,0,0,Z1 K,2,0,0,Z2 L,1,2 LESIZE,1,,,3 TYPE,1 MAT,1 REAL,1 LMESH,ALL *GET,DLEN1,NODE,1,LOC,Z *GET,DLEN2,NODE,3,LOC,Z *GET,DLEN3,NODE,4,LOC,Z *GET,DLEN4,NODE,2,LOC,Z CIRCLE,1,R1,2 ADRAG,2,3,4,5,,,1 AGLUE,ALL LSEL,S,LINE,,7,8 LSEL,A,LINE,,10 LSEL,A,LINE,,12 LESIZE,ALL,,,18,,1,,,0 LSEL,S,LINE,,6,9,3 LSEL,A,LINE,,11,13,2 LSEL,A,LINE,,2,5 LESIZE,ALL,,,12,,1,,,0 TYPE,3 MAT,3 REAL,3 SECNUM,3 MSHAP,0,2D AMESH,ALL CSYS,1 NSEL,S,LOC,X,R1 ESLN,S TYPE,2 MAT,2 REAL,2 ESURF,,BOT KEYOPT,2,5,2 ! TWO NODES 5TH,6TH NODES CSYS,0 ALLSEL,ALL ESEL,S,TYPE,,1 CM,COM116,ELEM ! COMPONENT WITH FLUID116 ELEMENTS ESEL,S,TYPE,,2 CM,COM152,ELEM ! COMPONENT WITH SURF152 ELEMENTS ALLSEL,ALL MSTOLE,1,'COM152','COM116' ! MAP 152 TO 116 AND CREATE THE 5/6 NODES OF 152 ALLSEL,ALL KSEL,S,,,1 NSLK,S D,ALL,TEMP,TINLET ! INLET TEMPERATURE ALLSEL,ALL ESEL,S,TYPE,,1 SFE,ALL,,HFLUX,,MDOT ! MASS FLOW RATE FOR FLUID ELEMENT ESEL,ALL CSYS,1 NSEL,S,LOC,X,R1 D,ALL,TTOP,TBULK ! BULK TEMPERATURE ON THE CYLINDER CSYS,0 ALLSEL,ALL ESEL,S,TYPE,,2 SFE,ALL,1,CONV,0,FILM ! FILM COEFFICIENT FOR SURFACE ELEMENT SFE,ALL,1,CONV,2,0 ! SET BULK TEMP ESEL,ALL EPLOT FINISH /SOLU ANTYPE,STATIC ! STEADY STATE ANALYSIS OUTRES,ALL,ALL /OUT,SCRATCH SOLVE SAVE FINI /POST1 SET,LAST *GET,TEMP1,NODE,1,TEMP ! TEMPERATURE AT NODE 1 OF FLUID116 ELEMENT *GET,TEMP2,NODE,2,TEMP ! TEMPERATURE AT NODE 2 OF FLUID116 ELEMENT *GET,TEMP3,NODE,3,TEMP ! TEMPERATURE AT NODE 3 OF FLUID116 ELEMENT *GET,TEMP4,NODE,4,TEMP ! TEMPERATURE AT NODE 4 OF FLUID116 ELEMENT ESEL,S,TYPE,,3 NSLE,S /ESHAPE,1 /SHOW,PNG,REV /VIEW,1,1,1,1 PLNSOL,TTOP PLNSOL,TBOT /SHOW,CLOSE *DIM,LABEL,CHAR,1,4 *DIM,LEN,,1,4 *DIM,VALUE_4,,4,3 LABEL(1,1) = 'NODE1' LABEL(1,2) = 'NODE3' LABEL(1,3) = 'NODE4' LABEL(1,4) = 'NODE2' MODULUS = (FILM*ACOS(-1)*DIAMETER*LENGTH)/(MDOT*CP) /COM, ANALYTICAL VALUES CALCULATED /COM, USING EQUATION MENTIONED IN THE REFERENCE BOOK POSITION1 = (DLEN1- DLEN1)/LENGTH POSITION2 = (DLEN2- DLEN1)/LENGTH POSITION3 = (DLEN3- DLEN1)/LENGTH POSITION4 = (DLEN4- DLEN1)/LENGTH ATEMP1 = (TINLET-TBULK)*EXP(-MODULUS*POSITION1)+TBULK ATEMP2 = (TINLET-TBULK)*EXP(-MODULUS*POSITION2)+TBULK ATEMP3 = (TINLET-TBULK)*EXP(-MODULUS*POSITION3)+TBULK ATEMP4 = (TINLET-TBULK)*EXP(-MODULUS*POSITION4)+TBULK /OUT, *VFILL,LEN(1,1),DATA,POSITION1 *VFILL,LEN(1,2),DATA,POSITION2 *VFILL,LEN(1,3),DATA,POSITION3 *VFILL,LEN(1,4),DATA,POSITION4 *VFILL,VALUE_4(1,1),DATA,ATEMP1 *VFILL,VALUE_4(1,2),DATA,TEMP1 *VFILL,VALUE_4(1,3),DATA,ABS(ATEMP1/TEMP1) *VFILL,VALUE_4(2,1),DATA,ATEMP2 *VFILL,VALUE_4(2,2),DATA,TEMP3 *VFILL,VALUE_4(2,3),DATA,ABS(ATEMP2/TEMP3) *VFILL,VALUE_4(3,1),DATA,ATEMP3 *VFILL,VALUE_4(3,2),DATA,TEMP4 *VFILL,VALUE_4(3,3),DATA,ABS(ATEMP3/TEMP4) *VFILL,VALUE_4(4,1),DATA,ATEMP4 *VFILL,VALUE_4(4,2),DATA,TEMP2 *VFILL,VALUE_4(4,3),DATA,ABS(ATEMP4/TEMP2) SAVE,TABLE_4 FINISH /COM, /OUT,vm271,vrt /COM,-------------------VM271 RESULTS COMPARISON: SOLID70 -------------------- /COM, /COM, LENGTH | TARGET | Mechanical APDL | RATIO /COM, /COM, RESUME,TABLE_1 /COM, TEMPERATURE COMPUTED ON THE NODES OF FLUID116 ELEMENT /COM, WITH CYLINDER MODELED USING SOLID70 ELEMENTS /COM, *VWRITE,LABEL(1,1),LEN(1,1),VALUE_1(1,1),VALUE_1(1,2),VALUE_1(1,3) (1X,A5,' ',F9.3,' ',F10.3,' ',F14.3,' ',F15.3) /COM, *VWRITE,LABEL(1,2),LEN(1,2),VALUE_1(2,1),VALUE_1(2,2),VALUE_1(2,3) (1X,A5,' ',F9.3,' ',F10.3,' ',F14.3,' ',F15.3) /COM, *VWRITE,LABEL(1,3),LEN(1,3),VALUE_1(3,1),VALUE_1(3,2),VALUE_1(3,3) (1X,A5,' ',F9.3,' ',F10.3,' ',F14.3,' ',F15.3) /COM, *VWRITE,LABEL(1,4),LEN(1,4),VALUE_1(4,1),VALUE_1(4,2),VALUE_1(4,3) (1X,A5,' ',F9.3,' ',F10.3,' ',F14.3,' ',F15.3) /COM, /COM,------------------------------------------------------------------------- /COM, /COM,------------------VM271 RESULTS COMPARISON: SHELL131 -------------------- /COM, /COM, LENGTH | TARGET | Mechanical APDL | RATIO /COM, /COM, RESUME,TABLE_2 /COM, /COM, TEMPERATURE COMPUTED ON THE NODES OF FLUID116 ELEMENT /COM, WITH CYLINDER MODELED USING SHELL131 ELEMENTS /COM, *VWRITE,LABEL(1,1),LEN(1,1),VALUE_2(1,1),VALUE_2(1,2),VALUE_2(1,3) (1X,A5,' ',F9.3,' ',F10.3,' ',F14.3,' ',F15.3) /COM, *VWRITE,LABEL(1,2),LEN(1,2),VALUE_2(2,1),VALUE_2(2,2),VALUE_2(2,3) (1X,A5,' ',F9.3,' ',F10.3,' ',F14.3,' ',F15.3) /COM, *VWRITE,LABEL(1,3),LEN(1,3),VALUE_2(3,1),VALUE_2(3,2),VALUE_2(3,3) (1X,A5,' ',F9.3,' ',F10.3,' ',F14.3,' ',F15.3) /COM, *VWRITE,LABEL(1,4),LEN(1,4),VALUE_2(4,1),VALUE_2(4,2),VALUE_2(4,3) (1X,A5,' ',F9.3,' ',F10.3,' ',F14.3,' ',F15.3) /COM, /COM,------------------------------------------------------------------------- /COM, /COM,------------------VM271 RESULTS COMPARISON: SOLID278 -------------------- /COM, /COM, LENGTH | TARGET | Mechanical APDL | RATIO /COM, /COM, RESUME,TABLE_3 /COM, /COM, TEMPERATURE COMPUTED ON THE NODES OF FLUID116 ELEMENT /COM, WITH CYLINDERS MODELED USING LAYERED SOLID278 ELEMENTS /COM, *VWRITE,LABEL(1,1),LEN(1,1),VALUE_3(1,1),VALUE_3(1,2),VALUE_3(1,3) (1X,A5,' ',F9.3,' ',F10.3,' ',F14.3,' ',F15.3) /COM, *VWRITE,LABEL(1,2),LEN(1,2),VALUE_3(2,1),VALUE_3(2,2),VALUE_3(2,3) (1X,A5,' ',F9.3,' ',F10.3,' ',F14.3,' ',F15.3) /COM, *VWRITE,LABEL(1,3),LEN(1,3),VALUE_3(3,1),VALUE_3(3,2),VALUE_3(3,3) (1X,A5,' ',F9.3,' ',F10.3,' ',F14.3,' ',F15.3) /COM, *VWRITE,LABEL(1,4),LEN(1,4),VALUE_3(4,1),VALUE_3(4,2),VALUE_3(4,3) (1X,A5,' ',F9.3,' ',F10.3,' ',F14.3,' ',F15.3) /COM, /COM,------------------------------------------------------------------------- /COM, /COM,------------------VM271 RESULTS COMPARISON: SHELL294 -------------------- /COM, /COM, LENGTH | TARGET | Mechanical APDL | RATIO /COM, /COM, RESUME,TABLE_4 /COM, /COM, TEMPERATURE COMPUTED ON THE NODES OF FLUID116 ELEMENT /COM, WITH CYLINDERS MODELED USING SHELL294 ELEMENTS /COM, *VWRITE,LABEL(1,1),LEN(1,1),VALUE_4(1,1),VALUE_4(1,2),VALUE_4(1,3) (1X,A5,' ',F9.3,' ',F10.3,' ',F14.3,' ',F15.3) /COM, *VWRITE,LABEL(1,2),LEN(1,2),VALUE_4(2,1),VALUE_4(2,2),VALUE_4(2,3) (1X,A5,' ',F9.3,' ',F10.3,' ',F14.3,' ',F15.3) /COM, *VWRITE,LABEL(1,3),LEN(1,3),VALUE_4(3,1),VALUE_4(3,2),VALUE_4(3,3) (1X,A5,' ',F9.3,' ',F10.3,' ',F14.3,' ',F15.3) /COM, *VWRITE,LABEL(1,4),LEN(1,4),VALUE_4(4,1),VALUE_4(4,2),VALUE_4(4,3) (1X,A5,' ',F9.3,' ',F10.3,' ',F14.3,' ',F15.3) /COM, /COM,------------------------------------------------------------------------- /OUT *LIST,vm271,vrt FINISH