Bibliography

[1] Ahmad, S., Irons, B. M. & Zienkiewicz, O. C. (1970). Analysis of thick and thin shell structures by curved finite elements. International Journal for Numerical Methods in Engineering. 2(3), 419-451.

[2] Bathe, K. J. (1996). Finite Element Procedures. Upper Saddle River, NJ: Prentice-Hall.

[3] Biot, M. A. (1965). Mechanics of Incremental Deformation. Hoboken, NJ: Wiley.

[4] Chen, L. H. (1959). Piping flexibility analysis by stiffness matrix. ASME, Journal of Applied Mechanics. New York, NY: ASME Technical.

[5] Cook, R. D. (1981). Concepts and Applications of Finite Element Analysis (2nd ed.). Hoboken, NJ: Wiley.

[6] Cook, R. D. (1972). Two hybrid elements for analysis of thick, thin and sandwich plates. International Journal for Numerical Methods in Engineering. 5(2), 277-288.

[7] Cuniff, D. F. & O'Hara, G. J. (1965). Normal mode theory for three-directional motion. NRL Report 6170. Washington, DC: U. S. Naval Research Laboratory.

[8] Denn, M. M. (1969). Optimization by Variational Methods. New York, NY: McGraw-Hill.

[9] Henshell, K. D. & Ong, J. H. (1975). Automatic masters for eigenvalue economization. Earthquake Engineering and Structural Dynamics. 3, 375-383.

[10] Imgrund, M. C. (1992). ANSYS® Verification Manual. Pittsburgh, PA: Swanson Analysis Systems.

[11] Flugge, W. (1967). Stresses in Shells. New York, NY: Springer.

[12] Fritz, R. J. (1972). The effect of liquids on the dynamic motions of immersed solids. ASME Journal of Engineering for Industry. 94(1), 167-173.

[13] Galambos, T. V. (1968). Structural Members and Frames. Englewood Cliffs, NJ: Prentice-Hall.

[14] Guyan, R. J. (1965). Reduction of stiffness and mass matrices. AIAA Journal. 3(2), 380.

[15] Hall, A. S. & Woodhead, R. W. (1961). Frame Analysis. Hoboken, NJ: Wiley.

[16] Rajakumar, C. & Rogers, C. R. (1992). The Lanczos algorithm applied to unsymmetric generalized eigenvalue problem. International Journal for Numerical Methods in Engineering. 32, 1009-1026.

[17] Irons, B. M. (1970) . A frontal solution program for finite element analysis. International Journal for Numerical Methods in Engineering. 2(1), 5-23.

[18] Irons, B. M. (1970). A frontal solution program for finite element analysis. International Journal for Numerical Methods in Engineering. 2(1), 149.

[19] Wilkinson, J. H. (1988). The Algebraic Eigenvalue Problem. (pp. 515-569). Oxford, UK: Clarendon.

[20] Kohnke, P. C. and Swanson, J. A. (1976). Thermo-electric finite elements. Proceedings from the International Conference on Numerical Methods in Electrical and Magnetic Field Problems. Santa Margherita Liqure, Italy.

[21] Kohnke, P. C. (1978). Large deflection analysis of frame structures by fictitious forces. International Journal of Numerical Methods in Engineering. 12(8), 1278-1294.

[22] Kollbrunner, C. F. and Balser, K. (1969). Torsion in Structures. New York, NY: Springer.

[23] Konopinski, E. J. (1969). Classical Descriptions of Motion. San Francisco, CA: Freeman and Company.

[24] Kreyszig, E. (1962). Advanced Engineering Mathematics. Hoboken, NJ: Wiley.

[25] Lekhnitskii, S. G. (1963). Theory of Elasticity of an Anisotropic Elastic Body. San Francisco, CA: Holden-Day.

[26] Melosh, R. J. & Bamford, R. M. (1969). Efficient solution of load-deflection equations. ASCE Journal of the Structural Division. 95, 661-676.

[27] Kanok-Nukulchai, W. (1979). A simple and efficient finite element for general shell analysis. International Journal for Numerical Methods in Engineering. 14, 179-200.

[28] Oden, J. T. (1968). Mechanics of Elastic Structures. New York, NY: McGraw-Hill.

[29] Przemieniecki, J. S. (1968). Theory of Matrix Structural Analysis. New York, NY: McGraw-Hill.

[30] Schnobrich, W. C. & Suidan, M. (1973). Finite element analysis of reinforced concrete. ASCE Journal of the Structural Division. 99(1), 2109-2122.

[31] Seide, P. (1977). Large deflection of rectangular membranes under uniform pressure. International Journal of Non-Linear Mechanics. 12(6), 397-406.

[32] Skjelbreia, L. & Hendrickson, J. A. (1961). Fifth order gravity wave theory. (10, 184-196). Proceedings from the Seventh Conference on Coastal Engineering. The Hague, The Netherlands.

[33] Timoshenko, S. & Woinowskey-Krieger, S. (1959). Theory of Plates and Shells. New York, NY: McGraw-Hill.

[34] Tracey, D. M. (1974). Finite elements for three dimensional elastic crack analysis. Nuclear Engineering and Design. 26(2), 282-920.

[35] Vanmarcke, E. H. (1976). Structural response to earthquakes. C. Lomnitz & E. Rosemblueth (Eds.). Seismic Risk and Engineering Decisions. (287-337). Oxford, UK: Elsvier Scientific.

[36] Wheeler, J. D. (1970). Method of calculating forces produced by irregular waves. Journal of Petroleum Technology. 22, 359-367.

[37] Willam, K. J. (1982). University of Colorado, Boulder: Private Communication.

[38] Willam, K. J. & Warnke, E. D. (1975). Constitutive model for the triaxial behavior of concrete. Proceedings from the International Association for Bridge and Structural Engineering. Bergamo, Italy.

[39] Wilson, E. L., Taylor, R. L., Doherty, W. P., & Ghaboussi, J. (1973). Incompatible displacement models. S. J. Fenves, N. Perrone, A. R. Robinson, & W. C. Schnobrich (Eds.). Numerical and Computer Methods in Structural Mechanics. (43-57). New York, NY: Academic.

[40] Zienkiewicz, O. C. (1977). The Finite Element Method. New York, NY: McGraw-Hill.

[41] American Society of Mechanical Engineers. (1974). ASME boiler and pressure vessel code, section III, division 1, subsection NC, class 2 components. New York, NY: American Society of Mechanical Engineers, Boiler and Pressure Vessel Committee.

[42] U. S. Nuclear Regulatory Commission. (1976). Regulatory guide 1.92, revision 1. Washington, DC: U. S. Nuclear Regulatory Commission, Office of Standards Development.

[43] Tamma, K. K. & Namburu, R. R. (1990). Recent advances, trends and new perspectives via enthalpy-based finite element formulations for applications to solidification problems. International Journal for Numerical Methods in Engineering. 30, 803-820.

[44] U. S. Army Coastal Engineering Research Center. (1977). Shore Protection Manual. (3rd ed., Vol. 1). Fort Belvior, VA.

[45] Beer, F. P. & Johnston, R. E. (1962). Vector Mechanics for Engineers, Statics and Dynamics. New York, NY: McGraw-Hill.

[46] Hinton, E., Rock, A. & Zienkiewicz, O. C. (1976). A note on mass lumping and related processes in the finite element method. International Journal of Earthquake Engineering and Structural Dynamics. 4, 245-249.

[47] Krieg, R. D. & Krieg, D. B. (1977). Accuracies of numerical solution methods for the elastic-perfectly plastic model. Journal of Pressure Vessel Technology. 99(4), 510-515.

[48] Thomson, W. T. (1971). Theory of Vibrations with Applications. Upper Saddle River, NJ: Prentice Hall.

[49] Roark, R. J. & Young, W. C. (1975). Formulas for Stress and Strain. New York, NY: McGraw-Hill.

[50] Taylor, R. L., Beresford, P. J., & Wilson, E. L. (1976). A non-conforming element for stress analysis. International Journal for Numerical Methods in Engineering. 10, 1211-1219.

[51] Hill, R. (1983). The Mathematical Theory of Plasticity. Oxford, UK: Oxford University Press.

[52] Shih, C. F. & Lee, D. (1978). Further developments in anisotropic plasticity. Journal of Engineering Materials and Technology. 100, 294-302.

[53] Valliappan, S. (1976). Nonlinear analysis for anistropic materials. International Journal for Numerical Methods in Engineering. 10, 597-606.

[54] Besseling, J. F. (1958). A theory of elastic, plastic, and creep deformations of an initially isotropic material showing anisotropic strain-hardening creep recovery and secondary creep. Journal of Applied Mechanics. 529-536.

[55] Owen, R. J., Prakash, A., & Zienkiewicz, O. C. (1974). Finite element analysis of non-linear composite materials by use of overlay sytems. Computers and Structures. 4(6), 1251-1267.

[56] Holman, J. P. (1976). Heat Transfer (4th ed.). New York, NY: McGraw-Hill.

[57] Batoz, J. L., Bathe, K. J., & Ho, L. W. (1980). A study of three-node triangular plate bending elements. International Journal of Numerical Methods in Engineering. 15, 1771-1812.

[58] Razzaque, A. (1984). On the four noded discrete kirchhoff shell elements. J. Robinson (Ed.). Accuracy Reliability Training in FEM Technology. 473-483.

[59] Gresho, P. M. & Lee, R. L. (1979). Don't suppress the wiggles - they're telling you something. Finite Element Methods for Convection Dominated Flows. 34, 37-61.

[60] Dean, R. G. (1974). Evaluation and development of water wave theories for engineering application: Special report no. 1. (Vol. 2). Fort Belvoir, VA: Coastal Engineering Research Center.

[61] American Society of Mechanical Engineers. (1974). ASME boiler and pressure vessel code, section III, division 1, subsection NB, class 1 components. New York, NY: American Society of Mechanical Engineers, Boiler and Pressure Vessel Committee.

[62] Power Piping. American National Standard Code for Pressure Piping. American Society of Mechanical Engineers. ANSI B31.1-1977.

[63] Orris, R. M. & Petyt, M. (1974). Finite element study of harmonic wave propagation in periodic structures. Journal of Sound and Vibration. 33(2), 223-236.

[64] Gordon, J. L. (1976). Outcur: An automated evaluation of two-dimensional finite element stresses according to ASME Section III stress requirements. Paper No. 76-WA/PVP-16. ASME Winter Annual Meeting.

[65] Powell, M. J. D. (1964). An efficient method for finding the minimum of a function of several variables without calculating derivatives. Computer Journal. 7, 155-162.

[66] Wilson, E. L., Der Kiereghian, A., & Bayo, E. (1981). A replacement for the SRSS method in seismic analysis. Earthquake and Structural Dynamics. 9(2), 187.

[67] Rankin, C. C. & Brogan, F. A. (1986). An element independent corotational procedure for the treatment of large rotations. Journal of Pressure Vessel Technology. 108, 165-174.

[68] Argyris, J. (1982). An excursion into large rotations. Computer Methods in Applied Mechanics and Engineering. 32, 85-155.

[69] Tse, S., Morse, I. E., & Hinkle, R. T. (1963). Mechanical Vibrations. Boston, MA: Allyn and Bacon.

[70] Chari, M. V. K. (1974). Finite element solution of the eddy current problem in magnetic structures. IEEE Transactions on Power Apparatus and Systems. PAS-93, 62-72 .

[71] Brauer, J. R. (1977). Paper A77-122-5, Finite element analysis of electromagnetic induction in transformers. IEEE Winter Power Meeting.

[72] Tandon, S. C. & Chari, M. V. K. (1981). Transient solution of the diffusion equation by the finite element method. Journal of Applied Physics. 52(3), 2431-2432.

[73] Silvester, P. P., Cabayan, H. S., & Browne, B. T. (1973). Efficient techniques for finite element analysis of electric machines. IEEE Transactions on Power Apparatus and Systems. PAS-92, 1274-1281.

[74] Chari, M. V. K. & D'Angelo, J. (1981). Paper No. V1-1, Finite element analysis of magneto-mechanical devices. Fifth International Workshop in Rare Earth-Cobalt Permanent Magnets and Their Application. 7-10.

[75] Anderson, O. W. (1973). Transform leakage flux program based on the finite element method. IEEE Transactions on Power Apparatus and Systems. 92(2).

[76] Zienkiewicz, O. C., Lyness, J., & Owen, D. R. (1977). Three-dimensional magnetic field determination using a scalar potential - a finite element solution. IEEE Transactions on Magnetics. 13(5), 1649-1656.

[77] Coulomb, J. L. & Meunier, G. (1984). Finite element implementation of virtual work principle for magnetic for electric force and torque computation. IEEE Transactions on Magnetics. 20(5), 1894-1896.

[78] Moon, F. C. (1984). Magneto-Solid Mechanics. Hoboken, NJ: Wiley.

[79] Baker, A. J. (1983). Finite Element Computational Fluid Mechanics. (266-284). New York, NY: McGraw-Hill.

[80] Yuan, S. W. (1976). Foundations of Fluid Mechanics. (71-102). Upper Saddle River, NJ: Prentice-Hall.

[81] Clough, R. W. & Penzien, J. (1975). Dynamics of Structures. (559). New York, NY: McGraw-Hill.

[82] Allik, H. & Hughes, J. R. (1970). Finite element for piezoelectric vibration. International Journal Numerical Methods of Engineering. 2, 151-157.

[83] Eer Nisse, N. P. (1967). Variational method for electroelastic vibration analysis. IEEE Transactions on Sonics and Ultrasonics. 14(4).

[84] Sato, J., Kawabuchi, M. & Fukumoto, A. (1979). Dependence of the electromechanical coupling coefficient on the width-to-thickness ratio of plant-shaped piezoelectric transducers used for electronically scanned ultrasound diagnostic systems. Journal of Acoustics Society of America. 66, 1609-1611.

[85] Kinsler, L. E., Frey, A. R., Coppens, A. B., & Sanders, J. V. (1982). Fundamentals of Acoustics. (98-123). Hoboken, NJ: Wiley.

[86] Craggs, A. (1986). A finite element model for acoustically lined small rooms. Journal of Sound and Vibration. 108(2), 327-337.

[87] Zienkiewicz, O. C. & Newton, R. E. (1969). Coupled vibrations of a structure submerged in a compressible fluid. Proceedings of the Symposium on Finite Element Techniques. University of Stuttgart, Germany.

[88] Malvern, Lawrence E. (1969). Introduction to the Mechanics of a Continuous Medium. Upper Saddle River, NJ: Prentice-Hall.

[89] Siegal, R. & Howell, J. R. (1981). Thermal Radiation Heat Transfer (2nd ed.). New York, NY: Hemisphere Publishing Corporation.

[90] Institute of Electrical and Electronic Engineers. (1988). ANSI/IEEE std no. 176 on piezoelectricity. New York, NY: IEEE.

[91] Antonova, E. E. & Looman, D. C. (2005). Finite elements for thermoelectric device analysis in ANSYS. 24th International Conference on Thermoelectrics. Clemson, SC.

[92] Onate, E., Rojek, J., Taylor, R. L., & Zienkiewicz, O. C. (2004). Finite calculus formulation for incompressible solids using linear triangles and tetrahedra. International Journal for Numerical Methods in Engineering. 59, 1473-1500.

[93] Fossum, A. F. & Fredrich, J. T. (2000). Cap plasticity model and compactive and dilatant prefailure deformation. Pacific Rocks 200: Rock Around the Rim. 1169-1176.

[94] Tsai, S. W. (1987). Composites Design (3rd ed.). Section 11.6. Dayton, OH: Think Composites.

[95] Weiss, J. (1982). Efficient finite element solution of multipath eddy current problems. IEEE Transactions on Magnetics. 18(6), 1710-1712.

[96] Garg, V. K. & Weiss, J. (1986). Finite element solution of transient eddy-current problems in multiply-excited magnetic systems. IEEE Transactions on Magnetics. 22(5), 1257-1259.

[97] Dvorkin, E. N. (1984). On Nonlinear Finite Element Analysis of Shell Structures. Published Ph.D thesis. Boston, MA: Massachusetts Institute of Technology.

[98] Dvorkin, E. N. & Bathe, K. J. (1984). A continuum mechanics based four-node shell element for general nonlinear analysis. Engineering Computations. 1, 77-88.

[99] Bathe, K. J. & Dvorkin, E. N. (1986). A formulation of general shell elements - the use of mixed interpolation of tensorial components. International Journal for Numerical Methods in Engineering. 22, 697-722.

[100] Hoit, M. & Wilson, E. L. (1983). An equation numbering algorithm based on a minimum front criteria. Computers and Structures. 16, 225-239.

[101] Cuthill, E. & McKee, J. (1969). Reducing the bandwidth of sparse symmetric matrices. Proceedings of the ACM National Conference. New York.

[102] Georges, A. & McIntyre, D. (1978). On the application of the minimum degree algorithm to finite element systems. SIAM Journal of Numerical Analysis. 15.

[103] Zinkiewicz, O. C. & Zhu, J. Z. (1987). A simple error estimator and adaptive procedure for practical engineering analysis. International Journal for Numerical Methods in Engineering. 24, 337-357.

[104] Babuska, I. & Rheinboldt, W. C. (1979). Analysis of optimal finite element meshes in R. Mathematics of Computation. 33, 431-463.

[105] Carnegie, W. (1959). Vibrations of rotating cantilever blading. Journal of Mechanical Engineering Science. 1(3), 235-240.

[106] Bergan, P. G. & Mollestad, E. (1985). An automatic time-stepping algorithm for dynamic problems. Computer Methods in Applied Mechanics and Engineering. 49.

[107] Paris, P. C. & Sih, G. C. (1965). Stress analysis of cracks. Fracture Toughness and Testing and its Applications. 30-83.

[108] O'Hara, G. J. & Belsheim, R. O. (1963). Interim design values for shock design of shipboard equipment. NRL Memorandum Report 1396. Washington, DC: U.S. Naval Research Laboratory.

[109] Markovsky, A., Soules, T. F., & Vukcevich, M. R. (1986). Mathematical and computational aspects of a general viscoelastic theory (Report no. 86-LRL-2021). G. E. Lighting and Research and Technical Services Operation.

[110] Scherer, G. W. & Rekhson, S. M. (1982). Viscoelastic-elastic composites: I, General theory. Journal of the American Ceramic Society. 65(7).

[111] Narayanaswamy, O. S. (1971). A model of structural relaxation in glass. Journal of the American Ceramic Society. 54(10), 491-498.

[112] Zienkiewicz, O. C., Watson, M., & King, I. P. (1968). A numerical method of visco-elastic stress analysis. International Journal of Mechanical Science. 10, 807-827.

[113] Taylor, R. L., Pister, K. S., & Goudreas, G. L. (1970). Thermochemical analysis of viscoelastic solids. International Journal for Numerical Methods in Engineering. 2, 45-59.

[114] Allman, D. J. (1984). A compatible triangular element including vertex rotations for plane elasticity analysis. Computers and Structures. 19, 1-8.

[115] Cook, R. D. (1986). On the allman triangle and a related quadrilateral element. Computers and Structures. 22, 1065-1067.

[116] MacNeal, R. H. & Harder, R. L. (1988). A refined for-foded membrane element with rotational degrees of freedom. Computers and Structures. 28(1), 75-84.

[117] Garvey, S. J. (1951). The quadrilateral shear panel. Aircraft Engineering. 134.

[118] Yunus, S. M., Pawlak, T. P., & Cook, R. D. (1991). Solid elements with rotational degrees of freedom part 1 and part 2. International Journal for Numerical Methods in Engineering. 31, 573-610.

[119] Mohammed, O. A. (1983). Magnetic Vector Potential Based Formulation and Computation of Nonlinear Magnetostatic Fields and Forces in Electrical Devices by Finite Elements. Ph.D. Dissertation. Blacksburg, VA: Virginia Polytechnic Institute and State University.

[120] Mayergoyz, I. D. (1987). A new scalar potential formulation for three-dimensional magnetostatic problems. IEEE Transactions on Magnetics. 23(6), 3889-3894.

[121] Biro, O. & Preis, K. (1989). On the use of the magnetic vector potential in the finite element analysis of three-dimensional eddy currents. IEEE Transactions on Magnetics. 25(4), 3145-3159.

[122] Robinson, J. (1985). Basic and Shape Sensivity Tests for Membrane and Plate Bending Finite Elements. Bridestowe, UK: Robinson and Associates.

[123] Kagawa, Y., Yamabuchi, T. & Kitagami, S. (1986). Infinite boundary element and its application to a combined finite-boundary element technique for unbounded field problems. C. A. Brebbia (Ed.). Boundary Elements VIII. New York, NY: Springer-Verlag.

[124] Oden, J. T. & Kikuchi, N. (1982). Finite element methods for constrained problems in elasticity. International Journal for Numerical Methods in Engineering. 18(5), 701-725.

[125] Sussman, T. & Bathe, K. J. (1987). A finite element formulation for nonlinear incompressible elastic and inelastic analysis. Computers and Structures. 26( ½), 357-409.

[126] Zienkiewicz, O. C., Liu, Y. C., & Huang, G. C. (1989). Error estimates and convergence rates for various incompressible elements. International Journal for Numerical Methods in Engineering. 28(9), 2191-2202.

[127] Huang, H. C. & Lewis, R. W. (1989). Adaptive analysis for heat flow problems using error estimation techniques. Presented at the 6th International Conference on Numerical Methods in Thermal Problems. University of Wales. Cardiff, Wales, UK.

[128] Weber, G. G., Lush, A. M., Zavaliangos, A., & Anand, L. (1990). An objective time-integration procedure for isotropic rate-independent elastic-plastic constitutive equations. International Journal of Plasticity. 6, 701-749.

[129] Eggert, G. M. & Dawson, P. R. (1988). A viscoplastic formulation with plasticity for transient metal forming. Computer Methods in Applied Mechanics and Engineering. 70, 165-190.

[130] Narayanaswami, R. & Adelman, H. M. (1974). Inclusion of transverse shear deformation in finite element displacement formulations. American Institute of Aeronautics and Astronautics Journal. 12(11), 1613-1614.

[131] Kaljevic, I., Saigal, S., & Ali, A. (1992). An infinite boundary element formulation for three-dimensional potential problems. International Journal for Numerical Methods in Engineering. 35(10), 2079-2100.

[132] Simo, J. C. (1986). Finite deformation post-buckling analysis involving inelasticity and contact constraints. International Journal for Numerical Methods in Engineering. 23, 779-800.

[133] Parisch, H. (1989). A consistent tangent stiffness matrix for three-dimensional non-linear contact analysis. International Journal for Numerical Methods in Engineering. 28, 1803-1812.

[134] Bayo, E. (1988). A modified Lagrangian formulation for the dynamic analysis of constrained mechanical systems. Computer Methods in Applied Mechanics and Engineering. 71, 183-195.

[135] Jiang, L. & Rogers, R. J. (1988). Combined Lagrangian multiplier and penalty function finite element technique for elastic impact analysis. Computers and Structures. 30, 1219-1229.

[136] Giannakopoulos, A. E. (1989). The return mapping method for the integration of friction constitutive relations. Computers and Structures. 32, 157-167.

[137] Owen, D. R. J. & Rodic, T. (1989). A plasticity theory of friction and joint elements. Proceedings of the 2nd International Computational Plasticity: Models, Software, and Applications Conference. Barcelona, Spain.

[138] Wriggers, P., Vu Van, T., & Stein, E. (1990). Finite element formulation of large deformation impact-contact problems with friction. Computers and Structures. 37, 319-331.

[139] Wriggers, P., Vu Van, T., & Stein, E. (1989). Models of friction, finite-element implementation and application to large deformation impact-contact problems. Proceedings of the 2nd International Computational Plasticity: Models, Software, and Applications Conference. Barcelona, Spain.

[140] Yunus, S. M., Kohnke, P. C., & Saigal, S. (1989). An efficient through-thickness integration scheme in an unlimited layer doubly curved isoparametric composite shell element. International Journal for Numerical Methods in Engineering. 28, 2777-2793.

[141] Geddes, E. R. (1982). An Analysis of the Low Frequency Sound Field in Non-Rectangular Enclosures Using the Finite Element Method. Ph.D Thesis. Pennsylvania State University: Centre County, PA.

[142] Gyimesi, M., Lavers, D., Pawlak, T., Ostergaard, D. (1993). Application of the general potential formulation in the ANSYS® program. IEEE Transactions on Magnetics. 29, 1345-1347.

[143] Rajakumar, C. & Ali, A. (1992). A solution method for acoustic boundary element eigenproblem with sound absorption using Lanczos algorithm. Proceedings of 2nd International Congress on Recent Developments in Air-Borne and Structure-Borne Sound and Vibration. Auburn University, AL.

[144] Nishimura, H., Isobe, M., & Horikawa, K. (1977). Higher order solutions of the stokes and the cnoidal waves. Journal of the Faculty of Engineering. 34(2), 268.

[145] Mahinthakumar, G. & Hoole, S. R. H. (1990). A parallelized element by element jacobi conjugate gradients algorithm for field problems and a comparison with other schemes. Applied Electromagnetics in Materials. 1, 15-28.

[146] Hughes, T. J. R. (1983). Analysis of transient algorithms with particular reference to stability behavior. T. Belytschko and K. J. Bathe (Eds.). Computation Methods for Transient Analysis. 1, 67-155.

[147] Anand, L. (1982). Constitutive equations for the rate-dependent deformation of metals at elevated temperatures. Journal of Engineering Materials and Technology. 104, 12-17.

[148] Brown, S. B., Kim, K. H., & Anand, L. (1989). An internal variable constitutive model for hot working of metals. International Journal of Plasticity. 5, 95-130.

[149] Dickens, J. M. (1980). Numerical Methods for Dynamic Substructure Analysis. Ph.D. Thesis. University of California, Berkeley.

[150] Gyimesi, M. & Lavers, J. D. (1992). Generalized potential formulation for 3D magnetostatic problems. IEEE Transactions on Magnetics. 28(4).

[151] Smythe, W. R. (1950). Static and Dynamic Electricity. New York, NY: McGraw-Hill.

[152] Demerdash, N. A., Nehl, T. W., Fouad, F. A., & Mohammed, O. A. (1981). Three dimensional finite element vector potential formulation of magnetic fields in electrical apparatus. IEEE Transactions on Power Apparatus and Systems. 100(8), 4104-4111.

[153] Eggert, G. M., Dawson, P. R., & Mathur, K. K. (1991). An adaptive descent method for nonlinear viscoplasticity. International Journal for Numerical Methods in Engineering. 31, 1031-1054.

[154] Schweizerhof, K. H. & Wriggers, P. (1986). Consistent linearization for path following methods in nonlinear FE analysis. Computer Methods in Applied Mechanics and Engineering. 59, 261-279.

[155] Zienkiewicz, O. C. & Cormeau, I. C. (1974). Visco-plasticity - Plasticity and creep in elastic solids - A unified numerical solution approach. International Journal for Numerical Methods in Engineering. 8, 821-845.

[156] Simo, J. C. & Taylor, R. L. (1985). Consistent tangent operators for rate-independent elastoplasticity. Computer Methods in Applied Mechanics and Engineering. 48, 101-118.

[157] Hughes, T. J. R. (1984). Numerical implementation of constitutive models: Rate-independent deviatoric plasticity. Theoretical Foundation for Large-Scale Computations for Nonlinear Material Behavior.

[158] Hughes, T. J. R. & Carnoy, E. (1983). Nonlinear finite element shell formulation accounting for large membrane strains. Computer Methods in Applied Mechanics and Engineering. 39, 69-82.

[159] Nedelec, J. (1980). Mixed finite elements in R3. Numerische Mathematik. 35, 315-341.

[160] Anand, L. (1985). Constitutive equations for hot-working of metals. International Journal of Plasticity. 1, 213-231.

[161] Abramowitz, M. & Stegun, I. A. (1972). Handbook of mathematical functions with formulas, graphs, and mathematical tables. (55, 966). Washing, DC: National Bureau of Standards.

[162] Swain, C. G. & Swain, M. S. (1980). A uniform random number generator that is reproducible, hardware-independent, and fast. Journal of Chemical Information and Computer Sciences. 56-58.

[163] Kreyszig, E. (1972). Advanced Engineering Mathematics (3rd ed.). Hoboken, NJ: Wiley.

[164] Hoel, P. G. (1962). Introduction to Mathematical Statistics (3rd ed.). (196). Hoboken, NJ: Wiley.

[165] Kutner, M. H., Nachtsheim, C. J., Neter, J., & Li, W. (1978). Applied Statistics. Boston, MA: Allyn and Bacon.

[166] Hughes, T. J. R. (1987). The Finite Element Method Linear Static and Dynamic Finite Element Analysis. Upper Saddle River, NJ: Prentice-Hall.

[167] Wilson, E. L. & Itoh, T. (1983). An eigensolution strategy for large systems. Computers and Structures. 16(1-4), 259-265.

[168] Yokoyama, T. (1990). Vibrations of a hanging Timoshenko beam under gravity. Journal of Sound and Vibration. 141(2), 245-258.

[169] Coulomb, J. L. (1983). A methodology for the determination of global electromechanical quantities from a finite element analysis and its application to the evaluation of magnetic forces, torques and stiffness. IEEE Transactions on Magnetics. 19(6), 2514-2519.

[170] Zienkiewicz, O. C., Emson, C., & Bettess, P. (1983). A novel boundary infinite element. International Journal for Numerical Methods in Engineering. 19, 393-404.

[171] Damjanic, F. & Owen, D. R. J. (1984). Mapped infinite elements in transient thermal analysis. Computers and Structures. 19(4), 673-687.

[172] Marques, J. M. M. C. & Owen, D. R. J. (1984). Infinite elements in quasi-static materially nonlinear problems. Computers and Structures. 18(4), 739-751.

[173] Lysmer, J. & Kuhlemeyer, R. L. (1969). Finite dynamic model for infinite media. Proceedings of the American Society of Civil Engineers Journal of the Engineering Mechanics Division. 95(4), 859-877.

[174] Li, H., Saigal, S., Ali, A. & Pawlak, T. P. (1994). Mapped infinite elements for 3D vector potential magnetic problems. International Journal for Numerical Methods in Engineering. 37, 343-356.

[175] Gyimesi, M., Lavers, J., Pawlak, T., & Ostergaard, D. (1993). Biot-Savart integration for bars and arcs. IEEE Transactions on Magnetics. 29(6), 2389-2391.

[176] Crisfield, M. A. (1981). A fast and incremental/iterative solution procedure that handles snap-through. Computers & Structures. 13, 55-62.

[177] Nour-Omid, B. & Rankin, C. C. (1991). Finite rotation analysis and consistent linearization using projectors. Computer Methods in Applied Mechanics and Engineering. 93, 353-384.

[178] Emson, C. R. I. & Simkin, J. (1983). An optimal method for 3D eddy currents. IEEE Transactions on Magnetics. 19(6), 2450-2452.

[179] Viollet, P. L. (1987). The modelling of turbulent recirculating flows for the purpose of reactor thermal-hydraulic analysis. Nuclear Engineering and Design. 99, 365-377.

[180] Launder, B. E. & Spalding, D. B. (1974). The numerical computation of turbulent flows. Computer Methods In Applied Mechanics and Engineering. 3, 269-289.

[181] Rice, J. G. & Schnipke, R. J. (1985). A monotone streamline upwind finite element method for convection-dominated flows. Computer Methods in Applied Mechanics and Engineering. 48, 313-327.

[182] Harlow, F. H. & Amsden, A. A. (1971). A numerical fluid dynamics calculation method for all flow speeds. Journal of Computational Physics. 8.

[183] White, F. M. (1991). Viscous Fluid Flow (2nd ed.). New York, NY: McGraw-Hill.

[184] Patankar, S. V. (1980). Numerical Heat Transfer and Fluid Flow. Hemisphere, NY: CRC.

[185] Hestenes, M. R. & Stiefel, E. (1952). Methods of conjugate gradients for solving linear system. Journal of Research of the National Bureau of Standards. 49(6).

[186] Reid, J. K. (1971). On the method of conjugate gradients for the solution of large sparse sets of linear equations. J. K. Reid (Ed.). In: Large Sparse Sets of Linear Equations . London, NY: Academic.

[187] Elman, H.C. (1981). Preconditioned conjugate-gradient methods for nonsymmetric systems of linear equations. V. R. Stepleman (Ed.). Advances In Computer Methods For Partial Differential Equations IV. 409-413.

[188] More, J. J. & Wright, S. J. (1993). Optimization Software Guide. 13. Philadelphia, PA: SIAM.

[189] Bilger, R. W. (1975). A note on Favre averaging in variable density flows. Combustion Science and Technology. 11, 215-217.

[190] McCalla, M. C. (1988). Fundamentals of Computer-Aided Circuit Simulation. Kluwer Academic.

[191] Vermeer, P. A. & Verrujit, A. (1981). An accuracy condition for consolidation by finite elements. International Journal for Numerical and Analytical Methods in Geomechanics. 5, 1-14.

[192] Tsai, S. W. & Hahn, H. T. (1980). Introduction to Composite Materials. (7.2). Lancaster, PA: Technomic Publishing.

[193] Box, G. E. P., Hunter, W. G., & Hunter, J. S. (1978). Statistics for Experimenters. 10. Hoboken, NJ: Wiley.

[194] Szabo, B. & Babuska, I. (1991). Finite Element Analysis. Hoboken, NJ: Wiley.

[195] Chen, M. T. & Ali, A. (1998). An efficient and robust integration technique for applied random vibration analysis. Computers and Structures. 66(6), 785-798.

[196] Harichandran, R. S. (1992). Random vibration under propagating excitation: Closed-form solutions. Journal of Engineering Mechanics ASCE. 118(3), 575-586.

[197] Grimes, R. G., Lewis, J. G., & Simon, H. D. (1996). A shifted block Lanczos algorithm for solving sparse symmetric generalized eigenproblems. SIAM Journal Matrix Analysis Applications. 15(1), 228-272.

[198] Rajakumar, C. & Rogers, C. R. (1991). The Lanczos algorithm applied to unsymmetric generalized eigenvalue problems. International Journal for Numercial Method in Engineering. 32, 1009-1026.

[199] Gartling, D. K. (1992). Finite element methods for non-Newtonian flows. Report SAND92-0886, CFD Dept. Albuquerque, NM: Sandia National Laboratories.

[200] Crochet, M. J., Davies, A. R., & Walters, K. (1984). Numerical Simulation of Non-Newtonian Flow. Amsterdam, The Netherlands: Elsevier Science.

[201] Hallquist, J. O. (1998). LS-DYNA Theoretical Manual. Troy, MI: Livermore Software Technology Corporation.

[202] Biro, O., Preis, K., Magele, C., Renhart, W., Richter, K. R., & Vrist, G. (1991). Numerical analysis of 3D magnetostatic fields. IEEE Transaction on Magnetics. 27(5), 3798-3803.

[203] Gymesi, M. & Ostergaard, D. (1997). Non-conforming hexahedral edge elements for magnetic analysis. COMPUMAG. Rio de Janeiro, Brazil: Ansys, internal development.

[204] Gymesi, M. & Lavers, D. (1992). Application of general potential formulation to finite elements. Honma, T., Sebestyen, I., & Shibata, T. (Eds.). Second Japan Hungarian Joint Seminar on Electromagnetics, Applied Electromagnetics in Materials and Computational Technology. Sapporo, Japan.

[205] Preis, K., Bardi, I., Biro, O., Magele, C., Vrisk, G., & Richter, K. R. (1992). Different finite element formulations of 3D magnetostatic fields. IEEE Transactions on Magnetics. 28(2), 1056-1059.

[206] Nedelec, J. C. (1980). Mixed finite elements in R3. Numerical Methods. 35, 315-341.

[207] Van Welij, J. S. (1982). Calculation of eddy currents in terms of H on hexahedra. IEEE Transactions on Magnetics. 18, 431-435.

[208] Kameari, A. (1990). Calculation of transient 3D eddy current using edge elements. IEEE Transactions on Magnetics. 26, 466-469.

[209] Jin, J. (1993). The Finite Element Method in Electromagnetics. Hoboken, NJ: Wiley.

[210] Whitney, H. (1957). Geometric Integration Theory. Princeton, NJ: Princeton University Press.

[211] Stratton, J. A. (1941). Electromagnetic Theory. (1.14). New York, NY: McGraw-Hill.

[212] Mitzner, K. M. (1967). An integral equation approach to scattering from a body of finite conductivity. Radio Science. 2, 1459-1470.

[213] Mittra, R. & Ramahi, O. (1989). Absorbing boundary conditions for the direct solution of partial differential equations arising in electromagnetic scattering problems. Finite Element Finite Difference Methods in Electromagnetic Scattering. 2, 133-173.

[214] Peric, D. & Owen, D. J. R. (1992). Computational model for 3D contact problems with friction based on the penalty method. International Journal for Numercial Method in Engineering. 35, 1289-1309.

[215] Cescotto, S. & Charilier, R. (1992). Frictional contact finite elements based on mixed variational principles. International Journal for Numercial Method in Engineering. 36, 1681-1701.

[216] Cescottot, S. & Zhu, Y. Y. (1994). Large strain dynamic analysis using solid and contact finite elements based on a mixed formulation - application to metalforming. Journal of Metals Processing Technology. 45, 657-663.

[217] Simo, J. C. & Laursen, T. A. (1992). An augmented Lagrangian treatment of contact problems involving friction. Computers and Structures. 42(1), 97-116.

[218] Simo, J. C. & Laursen, T. A. (1993). Algorithmic symmetrization of Coulomb frictional problems using augmented Lagrangians. Computers Methods in Applied Mechanics and Engineering. 10(1-2), 133-146.

[219] Barry, A., Bielak, J., & MacCamy, R. C. (1988). On absorbing boundary conditions for wave propagations. Journal of Computational Physics. 792, 449-468.

[220] Kallivokas, L. F., Bielak, J., & MacCamy, R. C. (1991). Symmetric local absorbing boundaries in time and space. Journal of Engineering Mechanics. 1179, 2027-2048.

[221] Hughes, T. J. R. (1980). Generalization of selective integration procedures to anisotropic and nonlinear media. International Journal for Numerical Methods in Engineering. 15(9), 1413-1418.

[222] Nagtegaal, J. C., Parks, D. M., & Rice, J. R. (1974). On numerically accurate finite element solutions in the fully plastic range. Computer Methods in Applied Mechanics and Engineering. 4, 153-178.

[223] Gyimesi, M. & Ostergaard, D. (1998). Mixed shape non-conforming edge elements. 1998 Conference on Electromagnetic Field Computation. Tuscon, AZ.

[224] Gyimesi, M. & Ostergaard, D. (1997). Analysis of benchmark problem TEAM20 with various formulations. Proceedings of the TEAM Workshop, COMPUMAG. (18-20). Rio de Janeiro, Brazil.

[225] Gyimesi, M. & Ostergaard, D. (1997). Magnetic corner: Accurate force computations. Analysis Solutions. 1(2), 10-11.

[226] Brooks, A. N. & Hughes, T. J. R. (1982). Streamline upwind/Petro-Galkerin formulation for convection dominated flows with particular emphasis on the incompressible Navier-Stokes equations. Computer Methods in Applied Mechanics and Engineering. 32, 199-259.

[227] Demerdash, N. A. & Arkadan, A. A. (1981). Notes on FEM modeling of permanent magnets in electrical devices. FEM for Electromagnetic Applications. 3, 2, 6-7, 17, 19.

[228] Demerdash, N. A. & Nehl, T. W. (1982). Determination of inductances in ferrite type magnet electric machinery by FEM. IEEE Trans. on MAG. 18, 1052-1054.

[229] Nehl, T. W., Faud, F. A., & Demerdash, N. A. (1982). Determination of saturated values of rotation machinery incremental and apparent inductances by an energy perturbation method. IEEE Trans. on PAS. 101, 4441-4451.

[230] Gyimesi, M., Zhulin, V., & Ostergaard, D. (1998). Particle trajectory tracing in ANSYS. Fifth International Conference on Charged Particle Optics. Delft University: Delft, Netherlands.

[231] Gyimesi, M. & Ostergaard, D. (1998). Inductance Computation by Incremental Finite Element Analysis. CEFC '98. Tucson, AZ.

[232] Demerdash, N. A. & Gillott, D. H. (1974). A new approach for determination of eddy currents and flux penetration in nonlinear ferromagnetic materials. IEEE Trans. on Magnetics. 10, 682-685.

[233] Flanagan, D. P. & Belytschko, T. (1981). A uniform strain hexahedron and quadrilateral with orthogonal hourglass control. International Journal for Numerical Methods in Engineering. 17, 679-706.

[234] Vogel, F. (1997). Topological optimization of linear-elastic structures with ANSYS 5.4. NAFEMS Conference on Topological Optimization. Aalen, Germany.

[235] Mlejnek, H. P. & Schirrmacher, R. (1993). An engineer's approach to optimal material distribution and shape finding. Computer Methods in Applied Mechanics and Engineering. 106, 1-26.

[236] Bendsoe, M. P. & Kikucki, N. (1988). Generating optimal topologies in structural design using a homogenization method. Computer Methods in Applied Mechanics and Engineering. 71, 197-224.

[237] Bonet, J. & Wood, R. D. (1997). Nonlinear Continuum Mechanics for Finite Element Analysis. Cambridge, England: Cambridge University Press.

[238] Simo, J. C. & Vu-Quoc, L. (1986). A three dimensional finite-strain rod model. Part II: Computational aspects. Computer Methods in Applied Mechanics and Engineering. 58, 79-116.

[239] Ibrahimbegovic, A. (1995). On finite element implementation of geometrically nonlinear reissner's beam theory: Three-dimensional Curved Beam Elements". Computer Methods in Applied Mechanics and Engineering. 122, 11-26.

[240] Vago, I. & Gyimesi, M. (1998). Electromagnetic Fields. Budapest, Hungary: Akademiiai Kiado.

[241] Flügge, S. (1958). Electric fields and waves. In the Encyclopedia of Physics. (Vol. 16). Berlin, DE: Springer-Verlag.

[242] Lagally, M. (1964). Vorlesungen uber Vektorrechnung. Leipzig, Sachsen: Akademische Verlagsgesellsch.

[243] Flanagan, D. P. & Belytschko, T. (1981). A uniform strain hexahedron and quadrilateral with orthogonal hourglass control. International Journal for Numerical Methods in Engineering. 17, 679-706.

[244] Callen, H. B. (1985). Thermodynamics and Introduction to Thermostatistics (2nd ed.). (84). New York, NY: Wiley.

[245] Chaboche, J. L. (1989). Constitutive equations for cyclic plasticity and cyclic viscoplasticity. International Journal of Plasticity. 5, 247-302.

[246] Chaboche, J. L. (1991). On some modifications of kinematic hardening to improve the description of ratcheting effects. International Journal of Plasticity. 7, 661-678.

[247] Timoshenko, S. & Goodier, J. (1961). Theory of Elastic Stability. New York, NY: McGraw-Hill.

[248] Schulz, M. & Fillippou, F. C. (1998). Generalized warping torsion formulation. Journal of Engineering Mechanics. 339-347.

[249] Gyimesi, M. & Ostergaard, D. (1999). Electro-mechanical capacitor element for MEMS analysis in ANSYS. Proceedings of Modelling and Simulation of Microsystems Conference. Aalen, Germany.

[250] Schulz, M. & Fillippou, F. C. (1993). Capacitance computation with ammeter element. University of Toronto, Department of Electrical Engineering, unpublished report available upon request from Ansys.

[251] Wang, C., Zhang, M., Wang, X., Wu, D., & Wang, H. (1999). ANSYS APDL for capacitance. Proceedings from the Second International Conference on Modeling and Simulation of Microsystems, Semiconductors, Sensors and Actuators. San Juan, Puerto Rico.

[252] Simo, J. C. & Hughes, T. J. R. (1997). Computational Inelasticity. Berlin, DE: Springer-Verlag.

[253] Voce, E. (1955). Metallurgica. Col. 51, 219.

[254] Press, W. H. (1993). Numerical Recipes in C: The Art of Scienfitic Computing. Cambridge, England: Cambridge University Press.

[255] Gyimesi, M., Lavers, D., Ostergaard, D., & Pawlak, T. (1995). Hybrid finite element-Trefftz method for open boundary anslysis. COMPUMAG, IEEE Transactions on Magnetics. 32(3), 671-674.

[256] Gyimesi, M. & Lavers, D. (1992). Application of the Trefftz Method to Exterior Problems. University of Toronto, Department of Electrical Engineering, unpublished report. Available upon request from Ansys.

[257] Gyimesi, M. & Lavers, D. (1993). Application of the Trefftz Method to Exterior Problems. University of Toronto, Department of Electrical Engineering, unpublished report. Available upon request from Ansys.

[258] Gyimesi, M. & Lavers, D. (1993). Implementation to the Exterior Trefftz Element. University of Toronto, Department of Electrical Engineering, unpublished report. Available upon request from Ansys.

[259] Trefftz, E. (1926). Ein Gegenstuck zum Ritzschen Verfahren. Proceedings of the Second International Congress on Applied Mechanics. Zurich, Switzerland.

[260] Trefftz, E. (1934). Mechanik det elastischen Korper. Handbuch der Physik, Translated from Matematicheskais teoriia Uprognosti, L. GTTI 1934. 6.

[261] Herrera, I. (1983). Topics in Boundary Element Research. C. A. Brebbia (Ed.). (pp. 225-253). New York, NY: Springer-Verlag.

[262] Zienkiewicz, O. C. (1978). The generalized finite element method and electromagnetic problems. Conference on the Computation of Magnetic Fields, Communications Proceedings. Laboratoire d'Electrotechnique, Grenoble, France.

[263] Zielinski, A. P. & Zienkiewicz, O. C. (1985). Generalized finite element analysis with T-complete boundary solution function. International Journal for Numerical Methods in Engineering. 21, 509-528.

[264] Zienkiewicz, O. C., Kelly, D. W., & Bettess, P. (1977). The coupling of the finite element method and boundary solution procedures. International Journal for Numerical Methods in Engineering. 11, 355-375.

[265] Zienkiewicz, O. C., Kelly, D. W., & Bettess, P. (1979). Marriage a la mode - The best of both worlds finite element and boundary integrals. Energy Methods in Finite Element Analysis. 81-104.

[266] Jirousek, J. & Guex, L. (1986). The hybrid-Trefftz finite element model and its application to plate bending. International Journal for Numerical Methods in Engineering. 23, 651-693.

[267] Mayergoyz, I. D., Chari, M. V. K., & Konrad, A. (1983). Boundary Galerkin's method for three-dimensional finite element electromagnetic field computation. IEEE Transactions on Magnetics. 19(6), 2333-2336.

[268] Chari, M. V. K. (1987). Electromagnetic field computation of open boundary problems by semi-analytic approach. IEEE Transactions on Magnetics. 23(5), 3566-3568.

[269] Chari, M. V. K. & Bedrosian, G. (1987). Hybrid harmonic/finite element method for two-dimensional open boundary problems. IEEE Transactions on Magnetics. 23(5), 3572-3574.

[270] Arruda, E. M. & Boyce, M. C. (1993). A three-dimensional constitutive model for the large stretch behavior of rubber elastic materials. Journal of the Mechanics and Physics of Solids. 41(2), 389-412.

[271] Bergstrom, J. S. & Boyce, M. C. (1998). Constitutive modeling of the large strain time-dependent behavior of elastomers. Journal of the Mechanics and Physics of Solids. 45(5), 931-954.

[272] Glass, M. W. (1995). Chaparral - A library package for solving large enclosure radiation heat transfer problems. Sandia National Laboratories Report, SAND95-2049. Albuquerque, NM.

[273] Diaz, A. R. & Kikucki, N. (1992). Solutions to shape and topology eigenvalue optimization problems using a homogenization method. International Journal for Numerical Methods in Engineering. 35, 1487-1502.

[274] Ladeveze, P. & Leguillon, D. (1983). Error estimation procedure in the finite element method and applications. SIAM Journal of Numerical Analysis. 20(3), 483-509.

[275] Synge, J. L. (1957). The Hypercircle in Mathematical Physics. Cambridge, England: Cambridge University Press.

[276] Cohen, M. F. & Greenberg, D. P. (1985). The hemi-cube: A radiosity solution for complex environments. Computer Graphics. 19(3), 31-40.

[277] Williams, M. L., Landel, R. F., & Ferry, J. D. (1955). The temperature dependence of relaxation mechanisms in amorphous polymers and other glass-forming liquids. Journal of the American Chemical Society. 77, 3701-3706.

[278] Huerta, A. & Liu, W. K. (1988). Viscous flow with large free surface motion. Computer Methods in Applied Mechanics and Engineering. 69, 277-324.

[279] Weaver, W. & Johnston, P. R. (1987). Structural Dynamics by Finite Elements. (413-415). Upper Saddle River, NJ: Prentice-Hall.

[280] Zhu, Y. Y. & Cescotto, S. (1994). Transient thermal and thermomechanical analysis by mixed FEM. Computers and Structures. 53, 275-304.

[281] Brackbill, J. U., Kothe, D. B., Zemach, C. (1992). A continuum method for modeling surface tension. Journal of Computational Physics. 100, 335-354.

[282] Kother, D. B. & Mjolsness, R. C. (1992). RIPPLE: A new model for incompressible flows with free surfaces. AIAA Journal. 30, 2694-2700.

[283] Richards, J. R., Lenhoff, A. M., & Beris, A. N. (1994). Dynamic breakup of liquid-liquid jets. Physics of Fluids. 8, 2640-2655.

[284] Sasmal, G. P. & Hochstein, J. I. (1994). Marangoni convection with a curved and deforming free surface in a cavity. Transaction of ASME, Journal of Fluid Engineering. 116, 577-582.

[285] Wang, G. (2000). Finite element simulations of gas-liquid flows with surface tension. Presented at the 2000 International Mechanical Engineering Congress and Exposition. Orlando, FL.

[286] Gyimesi, M. & Ostergaard, D. (2000). Finite element based reduced order modeling of micro electro mechanical sytems. Presented at the 2000 International Conference on Modeling and Simulation of Microsystems. San Diego, CA.

[287] Ostergaard, D., Gyimesi, M., Affour, B., Nachtergaele, P., Stirkovich, S. (2000). Efficient reduced order modeling for system simulation of micro electro mechanical systems from FEM models. Presented at the Symposium on Design Test Integration and Packaging of MEMS/MOEMS. Paris, France.

[288] Gyimesi, M., Wang, J. S., Ostergaard, D. (2000). Capacitance Computation by Hybrid P-Element and Trefftz Method. (37, 3680-3683). Presented at Conference on Electromagnetic Field Computation. Milwaukee, WI.

[289] Gyimesi, M. & Ostergaard, D. (2000). Capacitance Computation by Hybrid P-Element and Trefftz Method. Presented at the 2000 Micro Electro Mechanical Systems (MEMS) Conference. San Diego, CA.

[290] Gyimesi, M. & Ostergaard, D. (1998). Incremental magnetic inductance computation. ANSYS Conference and Exhibition. Pittsburgh, PA.

[291] Hieke, A. (2000). Tiny devices, big problems: Computation of capacitance in microelectronic structures. ANSYS Solutions. 2(3), 11-15.

[292] Gadala, M. S. & Wang, J. (1999). Simulation of metal forming processes with finite element methods. International Journal for Numerical Methods in Engineering. 44, 1397-1428.

[293] McMeeking, R. M. & Rice, J. R. (1975). Finite element formulations for problems of large elastic-plastic deformation. International Journal of Solids and Structures. 121, 601-616.

[294] Crisfield, M. A. (1997). Non-linear finite element analysis of solids and structures - Advanced topics. (Vol. 2). Hoboken, NJ: Wiley.

[295] Ogden, R. W. (1984). Nonlinear Elastic Deformations. Mineola, NY: Dover Publications.

[296] Perzyna, P. (1968). Fundamental problems in viscoplasticity. Advances in Applied Mechanics. 9, 313-377.

[297] Peirce, D., Shih, C. F., & Needleman, A. (1984). A tangent modulus method for rate dependent solids. Computers & Structures. 18, 888-975.

[298] Perić, D. & Owen, D. R. J. (1992). A model for large deformations of elasto-viscoplastic solids at finite strains: computational issues. Finite Inelastic Deformations: Theory and Applications. Berlin, DE: Springer-Verlag.

[299] Volakis, J. L., Chatterjee, A., & Kempel, L. C. (1998). Finite Element Method for Electromagnetics: Antennas, Microwave Circuits and Scattering Applications. New York, NY: IEEE.

[300] Itoh, T., Pelosi, G., & Silvester, P. P. (1996). Finite Element Software for Microwave Engineering. Hoboken, NJ: Wiley.

[301] L. Zhao, L. & Cangellaris, A. C. (1996). GT-PML: Generalized theory of perfectly matched layers and its application to the reflectionless truncation of finite-difference time-domain grids. IEEE Trans. on Microwave Theory and Techniques. 44, 2555-2563.

[302] George, A. & Liu, J. W. (1981). Computer Solution of Large Sparse Positive Definite Systems. Upper Saddle River, NJ: Prentice-Hall.

[303] Abramowitz, M. & Stegun, I. A. (1984). Pocketbook of Mathematical Functions -- Abridged Version of the Handbook of Mathematical Functions. Providence, Rhode Island: American Mathematical Society.

[304] Ang, A. H. & Tang, W. H. (1975). Probability Concepts in Engineering Planning and Design - Basic Principles. (Vol. 1). Hoboken, NJ: Wiley.

[305] Ang, A. H. & Tang, W. H. (1990). Probability Concepts in Engineering Planning and Design - Decision, Risk, and Reliability. (Vol. 2). Hoboken, NJ: Wiley.

[306] Box, G. E. P. & Behnken, D. W. (1960). Some new three level designs for the study of quantitative variables. Technometrics. 2(4), 455-476.

[307] Box, G. E. P. & Cox, D. R. (1964). An analysis of transformations. Journal of the Royal Statistical Society. B, 26, 211-252.

[308] Hammersly, J. M. & Handscomb, D. C. (1964). Monte Carlo Methods. Hoboken, NJ: Wiley.

[309] Iman, R. L. & Conover, W. J. (1980). Small sample sensitivity analysis techniques for computer models, with an application to risk assessment. Communications in Statistics, Part A - Theory and Methods. A9(17), 1749-1842.

[310] Kececioglu, D. (1991). Reliability Engineering Handbook. (Vol. 1). Englewood Cliffs, NJ: Prentice-Hall.

[311] Liu, P. L. & Der Kiureghian, A. (1986). Multivariate distribution models with prescribed marginals and covariances. Probabilistic Engineering Mechanics. 1(2), 105-112.

[312] Montgomery, D. C. (1991). Design and Analysis of Experiments. Hoboken, NJ: Wiley.

[313] Myers, R. C. (1971). Response Surface Methodology. Boston, MA: Allyn and Bacon.

[314] Neter, J., Kutner, M. H., Nachtscheim, C. J., & Wasserman, W. (1996). Applied Linear Statistical Models (4th ed.). New York, NY: McGraw-Hill.

[315] Sheskin, D. J. (1997). Handbook of Parametric and Nonparametric Statistical Procedures. Boca Raton, FL: CRC.

[316] Hancq, D. A., Walter, A. J., & Beuth, J. L. (2000). Development of an object-oriented fatigue tool. Engineering with Computers. 16, 131-144.

[317] Benson, D. J. & Hallquist, J. (1990). A single surface contact algorithm for the post-buckling analysis of shell structures. Computer Methods in Applied Mechanics and Engineering. 78(2).

[318] Simo, J. C. & Rifai, M. S. (1990). A class of mixed assumed strain methods and the method of incompatible modes. International Journal for Numerical Methods in Engineering. 29, 1595-1638.

[319] Simo, J. C. & Armero, F. (1992). Geometrically non-linear enhanced strain mixed methods and the method of incompatible modes. International Journal for Numerical Methods in Engineering. 33, 1413-1449.

[320] Simo, J. C., Amero, F., & Taylor, R. L. (1993). Improved versions of assumed enhanced strain tri-linear elements for 3D finite deformation problems. Computer Methods in Applied Mechanics and Engieering. 10, 359-386.

[321] Andelfinger, U. & Ramm, E. (1993). EAS-elements for two-dimensional, three-dimensional, plate and shell structures and their equivalence to HR-elements. International Journal for Numerical Methods in Engineering. 36, 1311-1337.

[322] Nagtegaal, J. C. & Fox, D. D. (1996). Using assumed enhanced strain elements for large compressive deformation. International Journal for Solids and Structures. 33, 3151-3159.

[323] Wang, J. S. & Ostergaard, D. F. (1999). Finite element-electric circuit coupled simulation method for piezoelectric transducer. Proceedings of the IEEE Ultrasonics Symposium. 2, 1105-1108.

[324] Pipkin, A. C. (1986). Lectures in Viscoelasticity Theory. New York, NY: Springer-Verlag.

[325] Drozdov, D. A. (1996). Finite Elasticity and Viscoelasticity: A Course in the Nonlinear Mechanics of Solids. New York, NY: World Publishing.

[326] Scherer, G. W. (1986). Relaxation in Glass and Composites. Hoboken, NJ: Wiley.

[327] Simo, J. C. (1987). On fully three-dimensional finite-strain viscoelastic damage model: Formulation and computational aspects. Computer Methods In Applied Mechechanics and Engineering. 60, 153-173.

[328] Holzapfel, G. A. (1996). On large strain viscoelasticity: continuum formulation and finite element applications to elastomeric structures. International Journal for Numerical Methods in Engineering. 39, 3903-3926.

[329] Gyimesi, M., Ostergaard, D., & Avdeev, I. (2002). Triangle Transducer for Micro Electro Mechanical Systems MEMS Simulation in ANSYS Finite Element Program. 2002 International Conference on Modeling and Simulation of Microsystems. San Francisco, CA.

[330] Gyimesi, M. & Ostergaard, D. (2001). A transducer finite element for dynamic coupled electrostatic-structural coupling simulation of microelectromechanical systems devices. MIT Conference. Cambridge, MA.

[331] Avdeev, I., Gyimesi, M., Lovell, M., & Onipede, D. (2001). Beam modeling for simulation of electro mechanical transducers using strong coupling approach. 6th U.S. National Congress on Computational Mechanics. Dearborn, MI.

[332] Chen, W. F. & Han, D. J. (1988). Plasticity for Structural Engineers. New York, NY: Springer-Verlag.

[333] Guilllaume, P. (1994). Derivees d'ordre superieur en conception optimale de forme. These de l'universite Paul Sabatier de Toulouse. Paul Sabatier University, FR.

[334] Hjelm, H. E. (1994). Yield surface for gray cast iron under biaxial stress. Journal of Engineering Materials and Technology. 116, 148-154.

[335] Blech, J. J. (1983). On isothermal squeeze films. Journal of Lubrication Technology. 105, 615-620.

[336] Griffen, W. S., Richardson, H. H., & Yamanami, S. (1966). A study of squeeze-film damping. Journal of Basic Engineering. 451-456.

[337] Langlois, W. E. (1962). Isothermal squeeze films. Quarterly Applied Mathematics. 20(2), 131-150.

[338] Mehner, J. , Kurth, S., Kaufmann, C., Kehr, K., & Dotzel, W. (1998). Simulation of gas film damping on microstructures with nontrivial geometries. Proceedings of the MEMS Conference, Eleventh Annual International Workshop of Micro Electro Mechanical Systems. Heidelberg, DE.

[339] Veijola, T. (1999). Equivalent circuit models for micromechanical inertial sensors. Helsinki University of Technology: Circuit Theory Laboratory Report Series CT-39.

[340] Sharipov, F. (1999). Rarefied gas flow through a long rectangular channel. Journal Vacuum Science and Technology. A175, 3062-3066.

[341] Craig, R. J. (1987). A review of time domain and frequency domain component mode synthesis methods. International Journal of Analytical and Experimental Modal Analysis. 2(2), 59-72.

[342] Craig, R. R. & Bampton, M. D. D. (1968). Coupling of substructures for dynamic analysis. American Institute of Aeronautics and Astronautics Journal. 12, 1313-1319.

[343] Gyimesi, M., Avdeev, I., & Ostergaard, D. (2004). Finite element simulation of micro electro mechanical systems (MEMS) by strongly coupled electro mechanical transducers. IEEE Transactions on Magnetics. 40(2), 557-560.

[344] Auricchio, F., Taylor, R. L., & Lubliner, J. (1997). Shape-memory alloys: macromodeling and numerical simulations of the superelastic behavior. Computational Methods in Applied Mechanical Engineering. 146, 281-312.

[345] Belytschko, T., Liu, W. K., Moran, B. (2000). Nonlinear finite elements for continua and structures. Computational Methods in Applied Mechanical Engineering. Hoboken, NJ: Wiley.

[346] Wilcox, D. C. (1988). Reassessment of the scale-determining equation for advanced turbulence models. American Institute of Aeuronautics and Astronautics Journal. 26, 1299-1310.

[347] Menter, F. R. (1994). Two-equation eddy-viscosity turbulence models for engineering applications. American Institute of Aeuronautics and Astronautics Journal. 32, 1598-1605.

[348] Chung, J & Hulbert, G. M. (1993). A time integration algorithm for structural dynamics with improved numerical dissipation: The generalized-α method. Journal of Applied Mechanics. 60, 371.

[349] Hilber, H. M., Hughes, T. J. R., & Taylor, R. L. (1977). Improved numerical dissipation for time integration algorithm in structural dynamics. Earthquake Engineering and Structural Dynamics. 5, 283.

[350] Wood, W. L., Bossak, M., & Zienkiewicz, O. C. (1981). An alpha modification of newmark method. International Journal of Numerical Method in Engineering. 15, 1562.

[351] Segalman, D. J., Fulcher, C. W. G., Reese, G. M., & Field, R. V. (1998). An efficient method for calculating RSM von Mises stress in a random vibration environment. (Vol. 1, Issue 3243, pp. 117-123). Proceedings of the 16th International Modal Analysis Conference. Santa Barbara, CA.

[352] Reese, G. M., Field Jr., R. V., & Segalman, D. J. (2000). A tutorial on design analysis using von Mises stress in random vibration environments. The Shock and Vibration Digest. 32(6), 466-474 .

[353] Chapman, A. J. (1984). Heat Transfer (4th ed.). New York, NY: Macmillan.

[354] Wilkinson, J. H. & Reinsch, C. (1971). Linear algebra. Handbook for Automatic Computation. 2, 418-439.

[355] Landau, L. D. & Lifshitz, E. M. (1984). Course of Theoretical Physics (2nd ed.). (Vol. 8). New York, NY: Pergamon.

[356] Nye, J. F. (1957). Physical Properties of Crystals: Their Representation by Tensors and Matrices. Oxford, UK: Clarendon.

[357] Beley, J. D., Broudiscou, C., Guillaume, P., Masmoudi, M., Thevenon, F. (1996). Application de la methode des derivees d'ordre eleve a l'optimisation des structures. Revue Europeenne des Elements Finis. 5(5-6), 537-567.

[358] R. Michalowski, R. & Mroz, Z. (1978). Associated and non-associated sliding rules in contact friction problems. Archives of Mechanics. 30(3), 259-276.

[359] Nelson, H. D, McVaugh, J. M. (1976). The dynamics of rotor-bearing systems using finite elements. Journal of Engineering for Industry. 98(2), 593-600.

[360] Xu, X. P. & Needleman, A. (1994). Numerical simulations of fast crack-growth in brittle solids. Journal of the Mechanics and Physics of Solids. 42, 1397-1434.

[361] Guo, D., Chu, F. L., & Zheng, Z. C. (2001). The influence of rotation on vibration of a thick cylindrical shell. Journal of Sound and Vibration. 242(3), 492.

[362] Alfano, G. & Crisfield, M. A. (2001). Finite element interface models for the delamination anaylsis of laminated composites: mechanical and computational issues. International Journal for Numerical Methods in Engineering. 50, 1701-1736.

[363] Gurson, A. L. (1977). Continuum theory of ductile rupture by void nucleation and growth: Part I-yield criterion and flow rules for porous ductile media. Journal of Engineering Materials and Technology. 1, 2-15.

[364] Needleman, A & Tvergaard, V. (1984). An analysis of ductile rupture in notched bars. Journal of Mechanical Physics Solids. 32(6), 461-490.

[365] Geradin, M. & Rixen, D. (1984). Mechanical Vibrations: Theory and application to structural dynamics. (p. 194). Hoboken, NJ: Wiley.

[366] Bathe, K. J. & Almeida, C. A. (1980). A simple and effective pipe elbow element - linear analysis. Journal of Applied Mechanics. 47(1), 93-100.

[367] Yan, A. M., Jospin, R. J., & Nguyen, D. H. (1999). An enhanced pipe elbow element - Application in plastic limit analysis of pipe structures. International Journal for Numerical Methods in Engineering. 46, 409-431.

[368] Bergstrom, J. S. & Boyce, M. C. (1998). Constitutive modeling of the large strain time-dependent behavior of elastomers. Journal of the Mechanics and Physics of Solids. 46, 931-954.

[369] J.S. Bergstrom, J. S. & Boyce, M. C. (2000). Large strain time-dependent behavior of filled elastomers. Mechanics of Materials. 32, 627-644.

[370] Dal, H. & Kaliske, M. (2009). Bergstrom-Boyce model for nonlinear finite rubber viscoelasticity: Theoretical aspects and algorithmic treatment for the FE method. Computational Mechanics. 44, 809-823.

[371] Gupta, A. K. (1990). Response Spectrum Method In Seismic Analysis and Design of Structures. Boca Raton, FL: CRC.

[372] NRC Regulatory Guide. (2006). Regulatory Guide 1.92, Revision 2. Rockville, MD: Published by the U.S. Nuclear Regulatory Commission.

[373] Laursen, T. A. & Chawla, V. (1997). Design of energy conserving algorithms for frictionless dynamic contact problems. International Journal for Numerical Methods in Engineering. 40, 863-886.

[374] Armero, F. & Petőcz, E. (1998). Formulation and analysis of conserving algorithms for dynamic contact/impact problems. Computer Methods in Applied Mechanics and Engineering. 158, 269-300.

[375] Ogden, R. W. & Roxburgh, D. G. (1999). A pseudo-elastic model for the mullins effect in filled rubber. Proceedings of the Royal Society of London, Series A (Mathematical and Physical Sciences). 455(1988), 2861-2877.

[376] Bose, K., Hurtado, J., Snyman, M., Mars, W., & Chen, J. (2003). Modeling of stress softening in filled elastomers. Busfield, J. C. & Muhr, A. H. (Eds.). Constitutive Models for Rubber III: Proceedings of the 3rd European Conference on Constitutive Models for Rubber (ECCMR). 223-230.

[377] Geradin, M. & Kill, N. (1984). A new approach to finite element modelling of flexible rotors. Engineering Computing. 1.

[378] Gurtin, M. E. (1981). An Introduction to Continuum Mechanics. Orlando, FL: Academic.

[379] Puso, M. A. & Laursen, T. A. (2004). A mortar segment-to-segment contact method for large deformation solid mechanics. Computer Methods in Applied Mechanics and Engineering. 193, 601-629.

[380] Puso, M. A. & Laursen, T. A. (2004). A mortar segment-to-segment frictional contact method for large deformations. Computer Methods in Applied Mechanics and Engineering. 193, 4891-4913.

[381] Arndt, S., Svenson, B., & Klingbeil, E. (1997). Modellierung der Eigenspannungen an der Rißspitze mit einem Schädigungsmodell. Technische Mechanik. 4, 323-332.

[382] Besson, J. & Guillemer-Neel, C. (2003). An extension of the green and gurson models to kinematic hardening. Mechanics of Materials. 35, 1-18.

[383] Sandler, I. S., DiMaggio, F. L., & Baladi, G. Y. (1976). Generalized cap model for geological materials. Journal of the Geotechnical Engineering Division. 102, 683-699.

[384] Pelessone, D. (1989). A Modified Formulation of the Cap Model. Gulf Atomic Report GA-C19579, prepared for the Defense Nuclear Agency under Contract DNA-001086-C-0277.

[385] Schwer, L. E. & Murray, Y. D. (1994). A three-invariant smooth cap model with mixed hardening. International Journal for Numerical and Analytical methods in Geomechanics. 18, 657-688.

[386] Foster, C. D., Regueiro, R. A., Fossum, A. F., & Borja, R. I. (2005). Implicit numerical integration of a three-invariant, isotropic/kinematic hardening cap plasticity model for geomaterials. Computer Methods in Applied Mechanics and Engineering. 194, 50-52, 5109-5138.

[387] Liu, R., Lin, G., & Bhashyam, G. (2010). Transformation of the Sandler and Rubin nonsmooth cap model to the Pelessone smooth cap model. ASCE Journal of Engineering Mechanics. 136, 680-685.

[388] WS Atkins PLC. Shell new wave. Engineering Software Report. No. ESR960611.

[389] O'Niell, L. A., Fakas, E., & Cassidy, M. (2004). A novel application of constrained new wave theory for floatover deck installations. Proceedings of the ASME 2004 23rd International Conference on Offshore Mechanics and Arctic Engineering. 165-174.

[390] Pinna, R. & Cassidy, M. (2004). Dynamic analysis of a monopod platform using constrained new wave. Proceedings of the ASME 2004 23rd International Conference on Offshore Mechanics and Arctic Engineering. 141-148.

[391] Pierson, W. J. & Moskowitz, L. (1964). A proposed spectral form of fully developed wind seas based on the similarity theory of S. A. Kitaigorodskii. Journal of Geophysical Research. 69, 5181-5190.

[392] Hasselmann, D. E., Dunckel, M., & Ewing, J. A. (1980). Directional wave spectra observed during Joint North Sea Wave Project (JONSWAP) 1973. Journal Physical Oceanography. 10, 1264-1280.

[393] American Petroleum Institute. (1993). Recommended practice for planning, designing and constructing fixed offshore platforms working stress design. Recommended Practice 2A-WSD (20th ed.). Washington, DC: American Petroleum Institute Publishing Services.

[394] Bajer, A., Belsky, V., Kung, S. W. (2004). Paper Number 2004-01-279: The influence of friction-induced damping and nonlinear effects on brake squeal analysis. 22nd Annual Brake Colloquium & Exhibition. Anheim, CA: SAE International.

[395] Tool, A. Q. (1946). Relation between inelastic deformability and thermal expansion of glass in its annealing range. Journal of the American Ceramic Society. 67(10), 240-253.

[396] Markovsky, A. Q., Soules, T. F., & Boyd, D. C. (1984). An efficient and stable algorithm for calculating fictive temperatures. Journal of the American Ceramic Society. 67, c56-c57.

[397] Hatch, M. R. (2001). Vibration Analysis using Matlab and ANSYS. Boca Raton, FL: Chapman & Hall.

[398] Puck, A., Kopp, J., & Knop, M. (2002). Guidelines for the determination of the parameters in Puck's action plane strength criterion. Composites Science and Technology. 62, 371-378.

[399] Davila, C. G., Jaunky, N., & Goswami, S. (2003). Failure criteria for FRP laminates in plane stress. 44th AIAA/ASME/ASCE/AHS Structures, Structural Dynamics, and Materials Conference. Norfolk, VA.

[400] Pinho, S. T., Dalvia, C. G., Camanho, P. P., Iannucci, L., & Robinson, P. (2005). Failure Models and Criteria for FRP Under In-Plane or Three-Dimensional Stress States Including Shear Non-linearity. NASA/TM-2005-213530.

[401] Wong, E. H., Teo, Y. C., & Lim, T. B. (1998). Moisture diffusion and vapour pressure modeling of IC packaging. (pp. 1372-1378). 48th Electronics Components and Technology Conference. Seattle, WA.

[402] Newmark, N. M. (1959). Method of computation for structural dynamics. ASCE Journal of Engineering Mechanics Division. 85, 67-94.

[403] Zhao, L. & Cangerllais, A. C. (1996). GT-PML: Generalized theory of perfectly matched layers and its application to the reflectionless truncation of finite-difference time-domain grids. IEEE Trans. Microwave Theory Tech. 44, 2555-2563.

[404] Allard, J. F. & Atalla, N. (2009). Propagation of Sound in Porous Media: Modelling Sound Absorbing Materials (2nd ed.). Hoboken, NJ: Wiley.

[405] Whitaker, J. C. (2005). The Electronics Handbook. Boca Raton, FL: CRC.

[406] Hintz, R. M. (1975). Analytical methods in component modal synthesis. American Institute of Aeronautics and Astronautics Journal. 13(8), 1007-1016.

[407] Martinez, D. R., Carne, T. G,. Gregory, D. L., & Miller, A. K. (1984). Combined experimental/analytical modeling using component mode synthesis. (pp. 140-152). AIAA/ASME/ASCE/AHS 25th Structures, Structural Dynamics and Materials Conference. Palm Springs, CA.

[408] NAVSEA. (1995). Shock design criteria for surface ships: 0908-LP-000-3010 REV-1. Naval Sea Systems Command. Washington, D.C.

[409] Herting, D. N. (1985). A general purpose, multi-stage, component modal synthesis method. Finite Elements in Analysis and Design. 1, 153-164.

[410] Graglia, R. D., Wilton, D. R., & Peterson, A. F. (1997). Higher order interpolatory vector bases for computational electromagnetics. IEEE Transactions on Antennas and Propagation. 45, 329-342.

[411] Bossart, R., Joly, N., & Bruneau, M. (2003). Hybrid numerical and analytical systems for acoustic boundary problems in thermo-viscous fluids. Journal of Sound and Vibration. 263, 69-84.

[412] Beltman, M. (1998). Visco-thermal wave propagating including acousto-elastic interaction. PhD Thesis. University of Twente, Mechanical Engineering Department. Enschede, Netherlands.

[413] Gao, Y. & Bower, A. F. (2004). A simple technique for avoiding convergence problems in finite element simulations of crack nucleation and growth on cohesive interfaces. Modelling and Simulation in Materials Science and Engineering. 12, 453-463.

[414] Dalrymple, R. A. & Cox, J. C. (1976). Symmetric finite-amplitude rotational water waves. Journal of Physical Oceanography. 6, 847-852.

[415] Meng, H. C. & Ludema, K. C. (1995). Wear models and predictive equations: Their form and content. Wear. 181-183, 443-457.

[416] Archard, J. F. (1953). Contact and rubbing of flat surfaces. Journal of Applied Physics. 24(1), 18-28.

[417] Hartzman, M., Reich, P., & Bezler, P. (1980). Piping benchmark problems - Dynamics analysis uniform support motion response method. Nuclear Regulatory Commission - NUREG/CR-1677. Rockville, MD.

[418] Paultre, P. (2010). Dynamics of Structures. (pp. 784). London, England: ISTE-Wiley.

[419] Léger, P., Idé, I. M., & Paultre, P. (1990). Multiple-support seismic analysis of large structures. Computers & Structures. 36(6), 1153-1158.

[420] Dickens, J. M., Nakagawa, J. M., & Wittbrodt, M. J. (1997). A critique of mode acceleration and modal truncation augmentation methods for modal response analysis. Computers & Structures. 62(6), 985-998.

[421] Biswas, J. K. & Duff, C. G. (1978). Response spectrum method with residual terms. ASME/CSME Pressure Vessels and Piping Conference with Nuclear Materials.

[422] Rafaely, B. (2000). Spatial-temporal correlation of a diffuse sound field. Journal of the Acoustical Society of America. 17, 3254-3258.

[423] Van den Nieuwenhof, B., Lielens, B., & Coyette, J. P. (2010). Modeling acoustic diffuse fields: Updated sampling procedure and spatial correlation function eliminating grazing incidences. (pp. 4723-4736). Proceedings of the International Conference on Noise and Vibration Engineering including USD2010.

[424] Nackenhorst, U. (2010). The ALE-formulation of bodies in rolling contact: Theoretical foundations and finite element approach. Computer Methods in Applied Mechanics and Engineering. 193(39-41), 4299-4322.

[425] Lim, S. H., Bladh, R., Castanier, M. P., & Pierre, C. (2007). Compact, generalized component mode mistuning representation for modeling bladed disk vibration. American Institute of Aeronautics and Astronautics Journal. 45(9), 2285-2298.

[426] Zienkiewicz, O. C. & Shiomi, T. (1984). Dynamic behaviour of saturated porous media; the generalized biot formulation and its numerical solution. International Journal for Numerical and Analytical Methods in Geomechanics. 8(1), 71-96.

[427] Mϋhlich, U. & Brocks, W. (2003). On the numerical integration of a class of pressure-dependent plasticity models including kinematic hardening. Computational Mechanics. 31(6), 479-488.

[428] Kirk, R. G. & Cunter, E. J. (1976). Short bearing analysis applied to rotor dynamics - Part I theory - Part II results of journal bearing response. Transactions of ASME - Journal of Lubrication Technology.

[429] Bonneau, D., Fatu, A., & Souchet, D. (2014). Hydrodynamic Bearings. Hoboken, NJ: Wiley.

[430] Hirani, H., Athre, K., & Biswas, S. (1999). Dynamically loaded finite length journal bearings: Analytical method of solution. 121.

[431] He, Z., Epureanu, B., & Pierre, C. (2007). Fluid-structural coupling effects on the dynamics of mistuned bladed disks. American Institute of Aeronautics and Astronautics Journal. 45(3), 552-561.

[432] Zienkiewicz, O. C., Xie, Y. M., Schrefler, B. A., Ledesma, A., & Bicanic, N. (1990). Static and dynamic behaviour of soils: A rational approach to quantitative solutions. II: Semi-saturated problems. Proceedings of the Royal Society of London. 429(1877), 311-321.

[433] Govindjeet, S. & Mihalic, P. A. (1996). Computational methods for inverse finite elastostatics. Computer Methods in Applied Mechanics and Engineering. 136, 47-57.

[434] Govindjeet, S. & Mihalic, P. A. (1998). Computational methods for inverse deformations in quasi-incompressible finite elasticity. International Journal for Numerical Methods in Engineering. 45, 821-838.

[435] Lu, J. & Li, L. (2016). On referential and spatial formulations of inverse elastostatic analysis. Computer Methods in Applied Mechanics and Engineering. 310, 189-207.

[436] Kampinga, W. R., Wijnant, Y. H., & da Boer, A. (2010). Performance of several viscothermal acoustic finite elements. ACTA Acustica United with Acustica. 96, 115-124.

[437] Olovsson, L., Simonsson, K., & Unosson, M. (2005). Selective mass scaling for explicit finite element analyses. International Journal for Numerical Methods in Engineering. 63, 1436-1445.

[438] Landshoff, R. (1955). A numerical method for treating fluid flow in the presence of shocks. Los Alamos National Laboratory. Los Alamos, NM.

[439] Von Neumann, J. & Richtmyer, R. D. (1950). A method for the numerical calculation of hydrodynamic shocks. Journal of Applied Physics. 21, 232.

[440] Allard, J. F. & Attala N. (2009). Propagation of Sound in Porous Media (2nd ed.). Hoboken, NJ: Wiley.

[441] Crisfield, M. A. (1991). Non-Linear Finite Element Analysis of Solids and Structures. Hoboken, NJ: Wiley.

[442] Assi, H. & Cobbold, R. S. (2016). A second-order, perfectly matched layer formulation to model 3D transient wave propagation in anisotropic elastic media. Proceedings of Meetings on Acoustics. 29, 045009.

[443] Popp, A., Gitterle, M., Gee, M.W., & Wall, W.A. (2010). A dual mortar approach for 3D finite deformation contact with consistent linearization. International Journal for Numerical Methods in Engineering. 83, 1428-1465.

[444] Dirkse, B. (2014). Finite Element Method Applied to the. One-dimensional Westervelt Equation. PhD Thesis. Delft University of Technology, Department of Numerical Analysis. Delft, Netherlands.

[445] Hoffelner, J. & Kaltenbacher, M. (2001). Finite Element Simulation of Nonlinear Wave Propagation in Thermoviscous Fluids Including Dissipation. IEEE Transactions on Utrasonics, Ferroelectrics, and Frequency Control. 48(3), 779-786.

[446] Du, Y., & Jensen, J. A. (2013). Fast simulation of non-linear pulsed ultrasound fields using an angular spectrum approach. Ultrasonics. 53(2), 588-594.