Bibliography

[1] K.D. Potter. The influence of accurate stretch data for reinforcements on the production of complex structural moldings. Part 1. Deformation of aligned sheets and fabrics.. Composites. Vol 10. pp. 161-167. 1979.

[2] O.K. Bergsma and J Huisman. Deep drawing of fabric reinforced thermoplastics. Computer Aided Design in Composite Material Technology. pp. 323-334. 1988.

[3] F. Van der Ween. Algorithms for draping fabrics on doubly-curved surfaces. Int J Numer Meth Eng. 31. pp. 1415-1426. 1991,.

[4] B.P., Van West and S.C. Luby. Fabric draping simulation in composites manufacturing Part II. Analytical methods. J Adv Matter. Vol. 28. No. 3. pp. 36-41. 1997.

[5] A.G., Prodromou and J. Chen. On the relationship between shear angle and wrinkling of textile composite preforms. Composites Part A: Applied Science and Manufacturing. Vol 28. No. 5. pp. 491-503. 1997.

[6] J. Wang, R. Paton, and J.R. Page. The draping of woven fabric preforms and prepregs for production of polymer composite components. Composites Part A: Applied Science and Manufacturing. Vol. 30. No. 6. pp. 757-765. 1999.

[7] U. Mohammed, C. Lekakou, and M.G. Bader. Experimental studies and analysis of the draping of woven fabrics. Composites Part A: Applied Science and Manufacturing. Vol. 31. No. 12. pp. 1409-1420. 2000.

[8] K. Potter. Bias extension measurements on cross-plied unidirectional prepreg. Composites Part A: Applied Science and Manufacturing. Vol. 33. No. 1. pp. 63-73. 2002.

[9] N.N. Huang and T.R. Tauchert. Thermal stresses in doubly curved cross-ply laminate. Int. J. Solids Structures. Vol 29. No. 8. pp. 991-1000. 1991.

[10] G. Kress, R. Roos, M. Barbezat, C. Dransfeld, and P. Ermanni. Model for interlaminar normal stress in singly curved laminates. Composite Structures. Vol. 69. No. 4. pp. 458-469. 2005.

[11] K. Rohwer. Improved Transverse Shear Stiffnesses for Layered Finite Elements. DFVLR-FB. 1988.

[12] R. Rolfes and K. Rohwer. Improved Transverse Shear Stresses in Composite Finite Elements Based on First Order Shear Deformation Theory. Int. J. for Num. Meth. in Eng. Vol. 40. pp. 51-60. 1997.

[13] R. Roos, G. Kress, M. , Barbezat, and P. Ermanni. Enhanced model for interlaminar normal stress in singly curved laminates. Journal of Composite Structures. Vol. 80. No. 3. pp. 327–333. 2007.

[14] R. Roos, G. Kress, and P. Ermanni. A post-processing method for interlaminar normal stresses in doubly curved laminates. Journal of Composite Structures. Vol. 81. pp. 463-470. 2007.

[15] P. Camanho and L. Lambert. A design methodology for mechanically fastened joints in laminated composite materials. Comp. Sci. Technol.. Vol. 66. pp. 3004-3020. 2006.

[16] P. Camanho, C. Davila, S. Pinho, I. Iannucci, and P. Robinson. Prediction of in situ strengths and matrix cracking in composites under transverse tension and in-plane shear. Composites Part A: Applied Science and Manufacturing. Vol. 37. No. 2. pp. 165-176. 2006.

[17] R. Cuntze and A. Freund. The predictive capability of failure mode concept-based strength criteria for multidirectional laminates. Comp. Sci. Technol.. Vol. 64. pp. 343-377. 2004.

[18] R. Cuntze. Efficient 3D and 2D failure conditions for UD laminae and their application within the verification of the laminate design. Comp. Sci. Technol.. Vol. 66. No. 7-8. pp. 1081-1096. 2006.

[19] R. Cuntze. The predictive capability of failure mode concept-based strength conditions for laminates composed of UD laminas under static tri-axial stress states. Part A of the WWFE-II. Journal of Composite Materials. 46. pp. 2563-2594. 2012.

[20] R. Cuntze. Basis Document, Update ComPoLyX Manual Chapter Cuntze and Relationship of Cuntze's UD Friction Parameters b with Mohr's Friction Coefficients.. CCeV website. May 4, 2015.

[21] C. Davila and J. Navin. Failure Criteria for FRP Laminates in Plane-Stress. NASA Langley Research Center. 2003.

[22] C. Davila, P. Camanho, and C. Rose. Failure Criteria for FRP Laminates. Journal of Composite Materials. Vol. 39. No. 4. 2005.

[23] Structural Materials Handbook, Volume 1. ESA PSS-03-203. ESA Publications Division. 1994.

[24] Structural Materials Handbook. ECSS-HB-304. ESA2009ESA Publications Division. 2009.

[25] R. Jones. Mechanics of Composite Materials. Taylor & Francis. pp. 109-112. 1999.

[26] S. Pinho, C. Davila, P. Camanho, L. Iannucci, and P. Robinson. Failure models and criteria for FRP under in-plane or three-dimensional stress states including shear non-linearity. TM-2005-213530. NASA. 2005.

[27] A. Puck and W. Schneider. On Failure Mechanisms and Failure Criteria of Filament-wound Glass-Fiber/Resin Composites. Plastic and Polymer Technology. pp. 33-43. 1969.

[28] A. Puck. Festigkeitsberechnung an Glasfaser/Kunststoff-Laminaten bei zusammengesetzter Beanspruchung. Kunststoffe. Vol. 59. No. 11. pp. 780-787. 1969.

[29] A. Puck. Festigkeitsanalyse von Faser-Matrix-Laminaten. Carl Hanser. 1996.

[30] A. Puck and H. Schurmann. Failure analysis of FRP laminates by means of physically based phenomenological models. Comp. Sci. Technol.. Vol. 58. pp 1045-1067. 1998.

[31] A. Puck, J. Kopp, and M. Knops. Failure analysis of FRP laminates by means of physically based phenomenological models. Comp. Sci. Technol.. 62. pp. 1633-1662. 2002.

[32] A. Puck, J. Kopp, and M. Knops. Guidelines for the determination of the parameters in Puck's action plane strength criterion. Comp. Sci. Technol. 62. pp. 371-378. 2002.

[33] R.T. Sullins. Manual for Structural Stability Analysis of Sandwich Plates and Shells. CR-145. NASA. 1969.

[34] M. Palantera. ESAComp4.1Theoretical Background of ESAComp Analyses. 1998.

[35] R.M. Jones. Mechanics of Composite Material. Hemisphere. 1975.

[36] O. Hoffman. The Brittle Strength of Orthotropic Materials. Journal of Composite Materials. Vol. 1. pp. 200-206. 1967.

[37] T.A. Sebaey, N. Blanco, C.S. Lopes, and J. Costa. Numerical investigation to prevent crack jumping in Double Cantilever Beam tests of multidirectional composite laminates. Comp. Sci. and Technol.. Vol. 71. pp. 1587-1592. 2011.

[38] P.D. Soden, A.S. Kaddour, and M.J. Hinton. Recommendations for designers and researchers resulting from the world-wide failure exercise. Composites Science and Technology. Vol. 64. No. 3-4. pp. 589-604. March, 2004.

[39] J.R. Vinson. Optimum design of composite honeycomb sandwich panels subjected to uniaxial compression. American Institute of Aeronautics and Astronautics Journal. Vol. 44. No. 10. pp.1690–1696. 1986.

[40] R.T. Sullins, G.W. Smith, and E.E. Spier. NASA CR-1457. Manual for structural stability analysis of sandwich plates and shells. 1969.

[41] L. Léotoing. International Journal of Solids and Structures. Nonlinear interaction of geometrical and material properties in sandwich beam instabilities. Vol.39. No. 13-14. pp. 3717-3739. 2002.

[42] I. Amidror. Scattered data interpolation methods for electronic imaging systems: a survey. Journal of Electronic Imaging. Vol. 11. No. 2. pp. 157-176. 2002.

[43] A. Petras. Failure mode maps for honeycomb sandwich panels. Composite Structures. Vol. 44. pp. 237-252. 1999.

[44] I.M. Daniel. Influence of Core Properties on the Failure of Composite Sandwich Beams. Journal of Mechanics of Materials and Structures. Vol. 4. No. 7-8. pp. 1271-1286. 2009.

[45] Z. Hashin. Failure Criteria for Unidirectional Fiber Composites. Journal of Applied Mechanics. Vol. 47. No. 2. pp. 329-334. 1980.

[46] P. Isaksson, A. Krusper, and P.A. Gradin. Shear Correction Factors for Corrugated Core Structures. Composite Structures. Vol. 80. pp. 123-130. 2007.

[47] V. Giavotto, M. Borri, P. Mantegazza, G. Ghiringhelli, V. Carmaschi, G. C. Maffioli, and F. Mussi. Anisotropic beam theory and applications. Computers & Structures. Vol. 16. No. 1-4. pp. 403-413. 1983.

[48] G. L. Ghiringhelli and P. Mantegazza. Linear, straight and untwisted anisotropic beam section properties from solid finite elements. Composites Engineering. Vol. 4. No. 12. pp. 1-13. 1994.